OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27411–27421

Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition

S.R.K. Rodriguez and J. Gómez Rivas  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27411-27421 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3658 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the strong coupling of surface lattice resonances (SLRs) — hybridized plasmonic/photonic modes in metallic nanoparticle arrays — to excitons in Rhodamine 6G molecules. We investigate experimentally angle-dependent extinction spectra of silver nanorod arrays with different lattice constants, with and without the Rhodamine 6G molecules. The properties of the coupled modes are elucidated with simple Hamiltonian models. At low momenta, plasmon-exciton-polaritons — the mixed SLR/exciton states — behave as free-quasiparticles with an effective mass, lifetime, and composition tunable via the periodicity of the array. The results are relevant for the design of plasmonic systems aimed at reaching the quantum degeneracy threshold, wherein a single quantum state becomes macroscopically populated.

© 2013 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(230.4555) Optical devices : Coupled resonators

ToC Category:

Original Manuscript: July 31, 2013
Revised Manuscript: September 23, 2013
Manuscript Accepted: September 24, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

S.R.K. Rodriguez and J. Gómez Rivas, "Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition," Opt. Express 21, 27411-27421 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009). [CrossRef]
  3. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  4. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett.24, 1011–1013 (1999). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003). [CrossRef]
  6. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008). [CrossRef] [PubMed]
  7. K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W. Lehmann, “Resonances of two-dimensional particle gratings in surface-enhanced raman scattering,” J. Opt. Soc. Am. B3, 430–440 (1986). [CrossRef]
  8. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121, 12606–12612 (2004). [CrossRef] [PubMed]
  9. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005). [CrossRef] [PubMed]
  10. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007). [CrossRef]
  11. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008). [CrossRef]
  12. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008). [CrossRef] [PubMed]
  13. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008). [CrossRef] [PubMed]
  14. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009). [CrossRef]
  15. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011). [CrossRef]
  16. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Materials6, 423–427 (2011).
  17. T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B86, 245425 (2012). [CrossRef]
  18. G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like plasmons in honeycomb lattices of metallic nanoparticles,” Phys. Rev. Lett.110, 106801 (2013). [CrossRef] [PubMed]
  19. S. Rodriguez, M. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Physica B: Condensed Matter407, 4081 (2012). [CrossRef]
  20. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009). [CrossRef] [PubMed]
  21. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010). [CrossRef]
  22. G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011). [CrossRef]
  23. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012). [CrossRef]
  24. G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013). [CrossRef]
  25. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013). [CrossRef] [PubMed]
  26. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett.93, 036404 (2004). [CrossRef] [PubMed]
  27. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005). [CrossRef]
  28. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006). [CrossRef]
  29. P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008). [CrossRef] [PubMed]
  30. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009). [CrossRef] [PubMed]
  31. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009). [CrossRef]
  32. A. Manjavacas, F. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011). [CrossRef] [PubMed]
  33. T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106, 196405 (2011). [CrossRef] [PubMed]
  34. A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons,” Phys. Rev. Lett.110, 126801 (2013). [CrossRef]
  35. M. A. Verschuuren, “Substrate conformal imprint lithography for nanophotonics,” PhD dissertation, Utrecht University (2010).
  36. A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys.79, 509 (1983). [CrossRef]
  37. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006). [CrossRef] [PubMed]
  38. B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res.40, 1067–1076 (2007). [CrossRef] [PubMed]
  39. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010). [CrossRef]
  40. J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev.112, 1555–1567 (1958). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited