OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27422–27437

Surface plasmon dispersion in metal hole array lasers

M. P. van Exter, V. T. Tenner, F. van Beijnum, M. J. A. de Dood, P. J. van Veldhoven, E. J. Geluk, and G. W. ’t Hooft  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27422-27437 (2013)
http://dx.doi.org/10.1364/OE.21.027422


View Full Text Article

Enhanced HTML    Acrobat PDF (1299 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally study surface plasmon lasing in a series of metal hole arrays on a gold-semiconductor interface. The sub-wavelength holes are arranged in square arrays of which we systematically vary the lattice constant and hole size. The semiconductor medium is optically pumped and operates at telecom wavelengths (λ ∼ 1.5 μm). For all 9 studied arrays, we observe surface plasmon (SP) lasing close to normal incidence, where different lasers operate in different plasmonic bands and at different wavelengths. Angle- and frequency-resolved measurements of the spontaneous emission visualizes these bands over the relevant (ω, k||) range. The observed bands are accurately described by a simple coupled-wave model, which enables us to quantify the backwards and right-angle scattering of SPs at the holes in the metal film.

© 2013 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Plasmonics

History
Original Manuscript: August 2, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 6, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Citation
M. P. van Exter, V. T. Tenner, F. van Beijnum, M. J. A. de Dood, P. J. van Veldhoven, E. J. Geluk, and G. W. ’t Hooft, "Surface plasmon dispersion in metal hole array lasers," Opt. Express 21, 27422-27437 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27422


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Berini and I. De Leon, “Surface plasmon polariton amplifiers and lasers,” Nat. Photonics6, 16–24 (2011). [CrossRef]
  2. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2007). [CrossRef]
  3. M. W. Kim and P. C. Ku, “Semiconductor nanoring lasers,” Appl. Phys. Lett.98, 201105 (2011). [CrossRef]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009). [CrossRef] [PubMed]
  5. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4, 382–387 (2010). [CrossRef]
  6. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotech.8, 506–511 (2013). [CrossRef]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998). [CrossRef]
  8. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett.92, 107401 (2004). [CrossRef] [PubMed]
  9. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-wavelength metallic surfaces,” Surf. Sci. Rep.64, 453 (2009). [CrossRef]
  10. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through sub-wavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010). [CrossRef]
  11. F. van Beijnum, C. Retif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature492, 411–414 (2012). [CrossRef] [PubMed]
  12. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum Cascade Surface-Emitting Photonic Crystal Laser,” Science302, 1374–1377 (2003). [CrossRef] [PubMed]
  13. F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett.110, 206802 (2013). [CrossRef]
  14. W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt.45, 661–699 (1998). [CrossRef]
  15. Semiconductor database of the Ioffe physical technical institute, St. Petersburg, Russia. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/
  16. P. Paddon and J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B61, 2090–2101 (2000). [CrossRef]
  17. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B60, 2610–2618 (1999). [CrossRef]
  18. N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon Scattering from Single Subwavelength Holes,” Phys. Rev. Lett.108, 127402 (2012). [CrossRef] [PubMed]
  19. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett.94, 113901 (2005). [CrossRef] [PubMed]
  20. F. van Beijnum, P.J. van Veldhoven, E.J. Geluk, G.W. ’t Hooft, and M.P. van Exter, “Loss compensation of extraordinary optical transmission,” submitted for publication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited