OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27481–27489

Optical control of plasmonic fields by phase-modulated pulse excitations

Keisuke Imaeda and Kohei Imura  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27481-27489 (2013)
http://dx.doi.org/10.1364/OE.21.027481


View Full Text Article

Enhanced HTML    Acrobat PDF (1505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed an advanced near-field optical method by combining an ultrafast near-field optical microscope with a prism-based pulse shaping system. We used this apparatus to visualize plasmonic optical fields and to measure the lifetime of plasmons excited on a rough gold film. We also studied the influence of the phase-modulation of the excitation pulse on the spatial distribution of the optical fields. We found that the spatial distribution of the optical fields can be controlled by a negatively chirped pulse.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties
(320.5520) Ultrafast optics : Pulse compression
(320.7100) Ultrafast optics : Ultrafast measurements
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: September 4, 2013
Revised Manuscript: October 10, 2013
Manuscript Accepted: October 24, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Citation
Keisuke Imaeda and Kohei Imura, "Optical control of plasmonic fields by phase-modulated pulse excitations," Opt. Express 21, 27481-27489 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  4. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003). [CrossRef]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  6. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  7. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006). [CrossRef] [PubMed]
  8. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008). [CrossRef]
  9. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  11. G. C. Schatz and R. P. Van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy, ” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).
  12. M. Moskovits, “Surface-enhanced Raman spectroscopy: A brief retrospective,” J. Raman Spectrosc.36(6-7), 485–496 (2005). [CrossRef]
  13. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008). [CrossRef] [PubMed]
  14. Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009). [CrossRef] [PubMed]
  15. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  16. M. Shapiro and P. Brumer, Principle of the Quantum Control of Molecular Processes (Wiley, 2003).
  17. T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem4(5), 418–438 (2003). [CrossRef] [PubMed]
  18. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys.9(20), 2470–2497 (2007). [CrossRef] [PubMed]
  19. H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science311(5767), 1589–1592 (2006). [CrossRef] [PubMed]
  20. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002). [CrossRef] [PubMed]
  21. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002). [CrossRef] [PubMed]
  22. M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett.6(4), 715–719 (2006). [CrossRef] [PubMed]
  23. M. Sukharev and T. Seideman, “Coherent control approaches to light guidance in the nanoscale,” J. Chem. Phys.124(14), 144707 (2006). [CrossRef] [PubMed]
  24. X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B77(19), 195109 (2008). [CrossRef]
  25. M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys.10(2), 025031 (2008). [CrossRef]
  26. T. Lee and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B71(3), 035423 (2005). [CrossRef]
  27. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007). [CrossRef] [PubMed]
  28. M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012). [CrossRef]
  29. K. Imura and H. Okamoto, “Near-field optical microscopy of plasmonic nanostructures,” in Handbook of Nano-Optics and Nanophotonics, M. Ohtsu, ed. (Springer, 2013).
  30. H. J. Wu, Y. Nishiyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique,” Appl. Phys. Express5(6), 062002 (2012). [CrossRef]
  31. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett.68(19), 2612–2614 (1996). [CrossRef]
  32. P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci.124(2–3), 506–528 (1983). [CrossRef]
  33. M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987). [CrossRef]
  34. T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003). [CrossRef]
  35. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005). [CrossRef] [PubMed]
  36. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009). [CrossRef]
  37. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986). [CrossRef] [PubMed]
  38. M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975). [CrossRef]
  39. K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006). [CrossRef] [PubMed]
  40. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules absorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980). [CrossRef]
  41. G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B30(2), 519–526 (1984). [CrossRef]
  42. D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012). [CrossRef] [PubMed]
  43. M. M. Wefers and K. A. Nelson, “Programmable phase and amplitude femtosecond pulse shaping,” Opt. Lett.18(23), 2032–2034 (1993). [CrossRef] [PubMed]
  44. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  45. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett.22(23), 1793–1795 (1997). [CrossRef] [PubMed]
  46. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997). [CrossRef]
  47. T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B68(2), 281–284 (1999). [CrossRef]
  48. D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B70(S1), S125–S131 (2000). [CrossRef]
  49. L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron.36(8), 893–899 (2000). [CrossRef]
  50. G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001). [CrossRef]
  51. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett.28(20), 1987–1989 (2003). [CrossRef] [PubMed]
  52. T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron.41(12), 1552–1557 (2005). [CrossRef]
  53. B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999). [CrossRef]
  54. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012). [CrossRef] [PubMed]
  55. K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009). [CrossRef]
  56. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999). [CrossRef]
  57. N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett.86(1), 47–50 (2001). [CrossRef] [PubMed]
  58. L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett.10(9), 3389–3394 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited