OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27490–27502

Sensing properties of lattice resonances of 2D metal nanoparticle arrays: An analytical model

Barbora Špačková and Jiří Homola  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27490-27502 (2013)
http://dx.doi.org/10.1364/OE.21.027490


View Full Text Article

Enhanced HTML    Acrobat PDF (3700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Theoretical study of sensing properties of lattice resonances supported by arrays of gold nanoparticles expressed in terms of the figure of merit (FOM) is reported. Analytical expressions for the FOM for surface and bulk refractive index changes are derived to establish the relationship between the sensing performance and design parameters and to allow for the design of nanoparticle arrays with optimal sensing performance. It is demonstrated that lattice resonances exhibit about two orders of magnitude higher bulk FOM than localized surface plasmon (LSP) resonance and that the surface FOM provided by lattice resonances and LSP resonances are comparable.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Plasmonics

History
Original Manuscript: September 5, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 6, 2013
Published: November 4, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics
Surface Plasmon Photonics (2013) Optics Express

Citation
Barbora Špačková and Jiří Homola, "Sensing properties of lattice resonances of 2D metal nanoparticle arrays: An analytical model," Opt. Express 21, 27490-27502 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27490


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  2. K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W. Lehmann, “Resonances of two-dimensional particle gratings in surface-enhanced Raman-scattering,” J. Opt. Soc. Am. B.3(3), 430–440 (1986). [CrossRef]
  3. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt.40(11), 2281–2291 (1993). [CrossRef]
  4. S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004). [CrossRef] [PubMed]
  5. S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  7. B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. G. de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010). [CrossRef]
  8. E. M. Hicks, S. L. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005). [CrossRef] [PubMed]
  9. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008). [CrossRef]
  10. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008). [CrossRef] [PubMed]
  11. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. C. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011). [CrossRef] [PubMed]
  12. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  13. C. F. H. Bohren, D. R, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).
  14. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  15. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman-scattering,” Phys. Rev. Lett.48(14), 957–960 (1982). [CrossRef]
  16. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007). [CrossRef]
  17. P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations,” Biointerphases3(3), FD4–FD11 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited