OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27503–27508

Tunable optical antennas enabled by the phase transition in vanadium dioxide

Stuart K. Earl, Timothy D. James, Timothy J. Davis, Jeffrey C. McCallum, Robert E. Marvel, Richard F. Haglund, Jr., and Ann Roberts  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27503-27508 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (859 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical antennas, subwavelength metallic structures resonating at visible frequencies, are a relatively new branch of antenna technology being applied in science, technology and medicine. Dynamically tuning the resonances of these antennas would increase their range of application and offer potential increases in plasmonic device efficiencies. Silver nanoantenna arrays were fabricated on a thin film of the phase change material vanadium dioxide (VO2) and the resonant wavelength of these arrays was modulated by increasing the temperature of the substrate above the critical temperature (approximately 68°C). Depending on the array, wavelength modulation of up to 110 nm was observed.

© 2013 OSA

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(240.6680) Optics at surfaces : Surface plasmons
(350.5340) Other areas of optics : Photothermal effects
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 31, 2013
Revised Manuscript: September 15, 2013
Manuscript Accepted: September 17, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Stuart K. Earl, Timothy D. James, Timothy J. Davis, Jeffrey C. McCallum, Robert E. Marvel, Richard F. Haglund, and Ann Roberts, "Tunable optical antennas enabled by the phase transition in vanadium dioxide," Opt. Express 21, 27503-27508 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1(4), 686–695 (2010). [CrossRef]
  2. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009). [CrossRef] [PubMed]
  3. H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano7(4), 2988–2998 (2013). [CrossRef] [PubMed]
  4. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013). [CrossRef] [PubMed]
  5. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  6. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  7. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95(1), 017402 (2005). [CrossRef] [PubMed]
  8. F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett.10(5), 1787–1792 (2010). [CrossRef] [PubMed]
  9. P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005). [CrossRef] [PubMed]
  10. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008). [CrossRef]
  11. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011). [CrossRef] [PubMed]
  12. F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Néel Temperature,” Phys. Rev. Lett.3(1), 34–36 (1959). [CrossRef]
  13. H. W. Verleur, A. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968). [CrossRef]
  14. T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009). [CrossRef]
  15. H. Coy, R. Cabrera, N. Sepulveda, and F. E. Fernandez, “Optoelectronic and all-optical multiple memory states in vanadium dioxide,” J. Appl. Phys.108(11), 113115 (2010). [CrossRef]
  16. K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett.11(3), 1025–1031 (2011). [CrossRef] [PubMed]
  17. D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010). [CrossRef] [PubMed]
  18. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007). [CrossRef] [PubMed]
  19. V. N. Andreev and V. A. Klimov, “Effect of deformation on the metal-semiconductor phase transition in vanadium dioxide thin films,” Phys. Solid State53(3), 577–582 (2011). [CrossRef]
  20. Y. Zhao, J. Hao, C. Chen, and Z. Fan, “Electrically controlled metal-insulator transition process in VO2 thin films,” J. Phys. Condens. Matter24(3), 035601 (2012). [CrossRef] [PubMed]
  21. J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett.96(21), 213106 (2010). [CrossRef]
  22. S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B82(20), 205425 (2010). [CrossRef]
  23. A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011). [CrossRef]
  24. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006). [CrossRef]
  25. J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008). [CrossRef]
  26. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (Springer, 2005).
  27. I. J. A. Woollam Co, “CompleteEASE Data Analysis Manual,” ( http://www.jawoollam.com , 2008).
  28. COMSOL Multiphysics”, ( http://www.comsol.com ).
  29. E. Palik Handbook of Optical Constants of Solids: Index (1998).
  30. D. Groulx and W. Ogoh, “Solid-liquid phase change simulation applied to a cylindrical latent heat energy storage system,” Proceedings of the 6th Annual COMSOL Conference, Boston (USA) (2009).
  31. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007). [CrossRef]
  32. E. B. Shadrin and A. V. Il'inskii, “On the nature of metal-semiconductor phase transition in vanadium dioxide,” Phys. Solid State42(6), 1126–1133 (2000). [CrossRef]
  33. S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations,” J. Appl. Phys.114(3), 033515 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited