OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27509–27518

Nonlocal propagation and tunnelling of surface plasmons in metallic hourglass waveguides

Aeneas Wiener, Antonio I. Fernández-Domínguez, J. B. Pendry, Andrew P. Horsfield, and Stefan A. Maier  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27509-27518 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7012 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nanofocusing performance of hourglass plasmonic waveguides is studied analytically and numerically. Nonlocal effects in the linearly tapered metal-air-metal stack that makes up the device are taken into account within a hydrodynamical approach. Using this hourglass waveguide as a model structure, we show that spatial dispersion drastically modifies the propagation of surface plasmons in metal voids, such as those generated between touching particles. Specifically, we investigate how nonlocal corrections limit the enormous field enhancements predicted by local electromagnetic treatments of geometric singularities. Finally, our results also indicate the emergence of nonlocality assisted tunnelling of plasmonic modes across hourglass contacts as thick as 0.5 nm.

© 2013 OSA

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.7040) Optics at surfaces : Tunneling
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: September 5, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: October 4, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Aeneas Wiener, Antonio I. Fernández-Domínguez, J. B. Pendry, Andrew P. Horsfield, and Stefan A. Maier, "Nonlocal propagation and tunnelling of surface plasmons in metallic hourglass waveguides," Opt. Express 21, 27509-27518 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett.237, 103–105 (1997). [CrossRef]
  2. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004). [CrossRef] [PubMed]
  3. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nature Photon.1, 641–648 (2007). [CrossRef]
  4. H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nature Photon.6, 838–844 (2012). [CrossRef]
  5. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006). [CrossRef] [PubMed]
  6. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett.110, 263901 (2013). [CrossRef] [PubMed]
  7. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the Quantum Regime in Tunnelling Plasmonics,” Nature (London)491, 574–577 (2012). [CrossRef]
  8. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature (London)483, 421–427 (2012). [CrossRef]
  9. A. Wiener, H. Duan, M. Bosman, A. P. Horsfield, J. B. Pendry, J. K. W Yang, S. A. Maier, and A. I. Fernández-Domínguez, “Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms,” ACS Nano7, 6287–6296 (2013). [CrossRef] [PubMed]
  10. N. Ashcroft and D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, 1976).
  11. A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal Effects in the Nanofocusing Performance of Plasmonic Tips,” Nano Lett.12, 3308–3314 (2012). [CrossRef] [PubMed]
  12. R. Fuchs and F. Claro, “Multipolar response of small metallic sphere: Nonlocal theory,” Phys. Rev. B35, 3722–3727 (1987). [CrossRef]
  13. R. Ruppin, “Extinction properties of thin metallic nanowires,” Opt. Commun.190, 205–209 (2001). [CrossRef]
  14. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112, 17983–17987 (2008). [CrossRef]
  15. S. Raza, G. Toscano, A. P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412 (2011). [CrossRef]
  16. A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012). [CrossRef] [PubMed]
  17. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104, 034311 (2008). [CrossRef]
  18. S. Raza, T. Christensen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity,” Phys. Rev. B88, 115401 (2013). [CrossRef]
  19. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  20. A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982).
  21. C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” ChemPhysChem14, 1109–1116 (2013). [CrossRef] [PubMed]
  22. G. Toscano, M. Wubs, S. Xiao, M. Yan, Z. F. Oztürk, A. Jauho, and N. A. Mortensen, “Plasmonic nanostructures: local versus nonlocal response” in Plasmonics: Metallic Nanostructures and Their Optical Properties VIII Proc. SPIE7757(2010). [CrossRef]
  23. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett.9, 887–891 (2009). [CrossRef] [PubMed]
  24. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun.3, 825 (2012). [CrossRef] [PubMed]
  25. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett.12, 1333–1339 (2012). [CrossRef] [PubMed]
  26. J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett.13, 564–569 (2013). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  28. C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement, Science337, 1072–1074 (2012). [CrossRef] [PubMed]
  29. A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Journal of Selected Topics in Quantum Electronics14, 1515–1521 (2008). [CrossRef]
  30. R. Ruppin, “Non-local optics of the near field lens,” J. Phys.: Condens. Matter17, 1803–1810 (2005). [CrossRef]
  31. G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics2, 161–240 (2013). [CrossRef]
  32. A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett.12, 5946–5953 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited