OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27537–27549

High reflectance ta-C coatings in the extreme ultraviolet

J. I. Larruquert, L. V. Rodríguez-de Marcos, J. A. Méndez, P. J. Martin, and A. Bendavid  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27537-27549 (2013)
http://dx.doi.org/10.1364/OE.21.027537


View Full Text Article

Enhanced HTML    Acrobat PDF (2182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: The extreme ultraviolet (EUV) reflectance of amorphous tetrahedrally coordinated carbon films (ta-C) prepared by filtered cathodic vacuum arc was measured in the 30-188-nm range at near normal incidence. The measured reflectance of films grown with average ion energies in the ~70-140-eV range was significantly larger than the reflectance of a C film grown with average ion energy of ~20 eV and of C films deposited by sputtering or evaporation. The difference is attributed to a large proportion of sp3 atom bonding in the ta-C film. This high reflectance is obtained for films deposited onto room-temperature substrates. The reflectance of ta-C films is higher than the standard single-layer coating materials in the EUV spectral range below 130 nm. A self-consistent set of optical constants of ta-C films was obtained with the Kramers-Krönig analysis using ellipsometry measurements in the 190-950 nm range and the EUV reflectance measurements. These optical constants allowed calculating the EUV reflectance of ta-C films at grazing incidence for applications such as free electron laser mirrors.

© 2013 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(230.4040) Optical devices : Mirrors
(260.7200) Physical optics : Ultraviolet, extreme
(310.6860) Thin films : Thin films, optical properties
(350.6090) Other areas of optics : Space optics

ToC Category:
Thin Films

History
Original Manuscript: June 10, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: October 2, 2013
Published: November 4, 2013

Citation
J. I. Larruquert, L. V. Rodríguez-de Marcos, J. A. Méndez, P. J. Martin, and A. Bendavid, "High reflectance ta-C coatings in the extreme ultraviolet," Opt. Express 21, 27537-27549 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27537


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Vehse, E. T. Arakawa, and J. L. Stanford, “Normal-incidence reflectance of aluminum films in the wavelength region 800-2000 A,” J. Opt. Soc. Am.57(4), 551–552 (1967). [CrossRef] [PubMed]
  2. R. P. Madden, L. R. Canfield, and G. Hass, “On the vacuum ultraviolet reflectance of evaporated aluminium before and during oxidation,” J. Opt. Soc. Am.53(5), 620–625 (1963). [CrossRef]
  3. W. J. Choyke, W. D. Partlow, E. P. Supertzi, F. J. Venskytis, and G. B. Brandt, “Silicon-carbide diffraction grating for the vacuum ultraviolet: feasibility,” Appl. Opt.16(8), 2013–2014 (1977). [CrossRef] [PubMed]
  4. M. M. Kelly, J. B. West, and D. E. Lloyd, “Reflectance of silicon carbide in the vacuum ultraviolet,” J. Phys. D14(3), 401–404 (1981). [CrossRef]
  5. J. I. Larruquert and R. A. M. Keski-Kuha, “Optical properties of hot-pressed B4C in the extreme ultraviolet,” Appl. Opt.39(10), 1537–1540 (2000). [CrossRef] [PubMed]
  6. R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, and A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt.27(14), 2815–2816 (1988). [CrossRef] [PubMed]
  7. J. B. Kortright and D. L. Windt, “Amorphous silicon carbide coatings for extreme ultraviolet optics,” Appl. Opt.27(14), 2841–2846 (1988). [CrossRef] [PubMed]
  8. G. M. Blumenstock and R. A. M. Keski-Kuha, “Ion-beam-deposited boron carbide coatings for the extreme ultraviolet,” Appl. Opt.33(25), 5962–5963 (1994). [CrossRef] [PubMed]
  9. G. F. Jacobus, R. P. Madden, and L. R. Canfield, “Reflecting films of platinum for the vacuum ultraviolet,” J. Opt. Soc. Am.53(9), 1084–1088 (1963). [CrossRef]
  10. W. R. Hunter, D. W. Angel, and G. Hass, “Optical properties of evaporated platinum films in the vacuum ultraviolet from 220 Å to 150 Å,” J. Opt. Soc. Am.69(12), 1695–1699 (1979). [CrossRef]
  11. G. Hass, G. F. Jacobus, and W. R. Hunter, “Optical properties of evaporated iridium in the vacuum ultraviolet from 500 Å to 2000 Å,” J. Opt. Soc. Am.57(6), 758–762 (1967). [CrossRef]
  12. J. T. Cox, G. Hass, J. B. Ramsey, and W. R. Hunter, “Reflectance and optical constants of evaporated osmium in the vacuum ultraviolet from 300 to 2000 Å,” J. Opt. Soc. Am.63(4), 435–438 (1973). [CrossRef]
  13. Y. A. Uspenskii, V. E. Levashov, A. V. Vinogradov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, E. N. Zubarev, and V. Y. Fedotov, “High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35-50nm,” Opt. Lett.23(10), 771–773 (1998). [CrossRef] [PubMed]
  14. S. A. Yulin, F. Schaefers, T. Feigl, and N. Kaiser, “Enhanced reflectivity and stability of Sc/Si multilayers,” Proc. SPIE5193, 155–163 (2004). [CrossRef]
  15. J. Gautier, F. Delmotte, F. Bridou, M. F. Ravet, F. Varniere, M. Roulliay, A. Jerome, and I. Vickridge, “Characterization and optimization of magnetron sputtered Sc/Si multilayers for extreme ultraviolet optics,” Appl. Phys., A Mater. Sci. Process.88(4), 719–725 (2007). [CrossRef]
  16. D. L. Windt, J. F. Seely, B. Kjornrattanawanich, and Y. A. Uspenskii, “Terbium-based extreme ultraviolet multilayers,” Opt. Lett.30(23), 3186–3188 (2005). [CrossRef] [PubMed]
  17. B. Kjornrattanawanich, D. L. Windt, J. F. Seely, and Y. A. Uspenskii, “SiC/Tb and Si/Tb multilayer coatings for extreme ultraviolet solar imaging,” Appl. Opt.45(8), 1765–1772 (2006). [CrossRef] [PubMed]
  18. B. Kjornrattanawanich, D. L. Windt, and J. F. Seely, “Normal-incidence silicon-gadolinium multilayers for imaging at 63 nm wavelength,” Opt. Lett.33(9), 965–967 (2008). [CrossRef] [PubMed]
  19. M. Vidal-Dasilva, M. Fernández-Perea, J. A. Méndez, J. A. Aznárez, and J. I. Larruquert, “Narrowband multilayer coatings for the extreme ultraviolet range of 50-92 nm,” Opt. Express17(25), 22773–22784 (2009). [CrossRef] [PubMed]
  20. J. I. Larruquert, M. Vidal-Dasilva, S. García-Cortés, L. Rodríguez-de Marcos, M. Fernández-Pereaa, J. A. Aznárez, and J. A. Méndez, “Multilayer coatings for the far and extreme ultraviolet,” Proc. SPIE8076, 80760D, 80760D-8 (2011). [CrossRef]
  21. M. Fernández-Perea, R. Soufli, J. C. Robinson, L. Rodríguez-De Marcos, J. A. Méndez, J. I. Larruquert, and E. M. Gullikson, “Triple-wavelength, narrowband Mg/SiC multilayers with corrosion barriers and high peak reflectance in the 25-80 nm wavelength region,” Opt. Express20(21), 24018–24029 (2012). [CrossRef] [PubMed]
  22. H. R. Philipp and E. A. Taft, “Kramers-Kronig analysis of refiectance data for diamond,” Phys. Rev.136(5A), A1445–A1448 (1964). [CrossRef]
  23. R. A. Roberts and W. C. Walker, “Optical study of the electronic structure of diamond,” Phys. Rev.161(3), 730–735 (1967). [CrossRef]
  24. K. Kurosawa, R. Sonouchi, A. Yokotani, W. Sasaki, M. Kattoh, Y. Takigawa, and K. Nishimura, “Fabrication, characteristics, and performance of diamond mirrors for vacuum ultraviolet excimer lasers,” Opt. Eng.34(5), 1405–1409 (1995). [CrossRef]
  25. T. Sasano, E. Ishiguro, S. Mitani, and H. Tomimori, “Reflectivities of chemical vapor deposition diamond mirrors in the vacuum ultraviolet region,” Rev. Sci. Instrum.66(2), 2211–2213 (1995). [CrossRef]
  26. P. W. May, “CVD diamond - a new technology for the future?” Endeavour Mag.19(3), 101–106 (1995). [CrossRef]
  27. D. L. Windt, W. C. Cash, M. Scott, P. Arendt, B. Newnam, R. F. Fisher, A. B. Swartzlander, P. Z. Takacs, and J. M. Pinneo, “Optical constants for thin films of C, diamond, Al, Si, and CVD SIC from 24 A to 1216 A,” Appl. Opt.27(2), 279–295 (1988). [CrossRef] [PubMed]
  28. S. Coraggia, F. Frassetto, J. A. Aznarez, J. I. Larruquert, J. A. Mendez, M. Negro, S. Stagira, C. Vozzi, and L. Poletto, “Carbon coatings for extreme-ultraviolet high-order laser harmonics,” Nucl. Instr. Meth. A635(1), S43–S46 (2011). [CrossRef]
  29. J. I. Larruquert and R. A. M. Keski-Kuha, “Reflectance measurements and optical constants in the extreme ultraviolet of thin films of ion-beam-deposited carbon,” Opt. Commun.183(5-6), 437–443 (2000). [CrossRef]
  30. P. J. Martin and A. Bendavid, “Review of the filtered vacuum arc process and materials deposition,” Thin Solid Films394(1-2), 1–14 (2001). [CrossRef]
  31. A. C. Ferrari, A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan, L. M. Brown, S. E. Rodil, B. Kleinsorge, and J. Robertson, “Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy,” Phys. Rev. B62(16), 11089–11103 (2000). [CrossRef]
  32. F. Xiong, Y. Y. Wang, and R. P. H. Chang, “Complex dielectric function of amorphous diamond films deposited by pulsed-excimer-laser ablation of graphite,” Phys. Rev. B Condens. Matter48(11), 8016–8023 (1993). [CrossRef] [PubMed]
  33. S. Waidmann, M. Knupfer, J. Fink, B. Kleinsorge, and J. Robertson, “Electronic structure studies of undoped and nitrogen-doped tetrahedral amorphous carbon using high-resolution electron energy-loss spectroscopy,” J. Appl. Phys.89(7), 3783–3792 (2001). [CrossRef]
  34. P. J. Martin, A. Bendavid, T. J. Kinder, and L. Wielunski, “The deposition of TiN thin films by nitrogen ion assisted deposition of Ti from a filtered cathodic arc source,” Surf. Coat. Tech.86–87, 271–278 (1996). [CrossRef]
  35. D. Shi Xu, D. Flynn, B. K. Tay, S. Prawer, K. W. Nugent, S. R. P. Silva, Y. Lifshitz, and W. I. Milne, “Mechanical properties and Raman spectra of tetrahedral amorphous carbon films with high sp3 fraction deposited using a filtered cathodic arc,” Philos. Mag. B76(3), 351–361 (1997).
  36. M. C. Polo, J. L. Andújar, A. Hart, J. Robertson, and W. I. Milne, “Preparation of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition,” Diamond Related Materials9(3-6), 663–667 (2000). [CrossRef]
  37. B. K. Tay, X. Shi, L. K. Cheah, and D. I. Flynn, “Optical properties of tetrahedral amorphous carbon films determined by spectroscopic ellipsometry,” Thin Solid Films308–309, 268–272 (1997). [CrossRef]
  38. R. Klucker, M. Skibowski, and W. Steinmann, “Anisotropy in the optical transitions from the π and σ valence bands of graphite,” Phys. Status Solidi, B Basic Res.65(2), 703–710 (1974). [CrossRef]
  39. R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, and A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt.27(14), 2815–2816 (1988). [CrossRef] [PubMed]
  40. G. M. Blumenstock, R. A. M. Keski-Kuha, and M. L. Ginter, “Extreme ultraviolet optical properties of ion-beam-deposited boron carbide thin films,” Proc. SPIE2515, 558–564 (1995). [CrossRef]
  41. G. Hass, G. F. Jacobus, and W. R. Hunter, “Optical Properties of Evaporated Iridium in the Vacuum Ultraviolet from 500 Å to 2000 Å,” J. Opt. Soc. Am.57(6), 758–760 (1967). [CrossRef]
  42. J. T. Cox, G. Hass, J. B. Ramsey, and W. R. Hunter, “Reflectance and optical constants of evaporated osmium in the vacuum ultraviolet from 300 to 2000 Å,” J. Opt. Soc. Am.63(4), 435–438 (1973). [CrossRef]
  43. M. Chhowalla, J. Robertson, C. W. Chen, S. R. P. Silva, C. A. Davis, G. A. J. Amaratunga, and W. I. Milne, “Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films,” J. Appl. Phys.81(1), 139–145 (1997). [CrossRef]
  44. A. LiBassi, A. C. Ferrari, V. Stolojan, B. K. Tanner, J. Robertson, and L. M. Brown;“Density, sp3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy,” Diamond Related Materials9(3-6), 771–776 (2000). [CrossRef]
  45. Z. Y. Chen and J. P. Zhao, “Optical constants of tetrahedral amorphous carbon films in the infrared region and at a wavelength of 633 nm,” J. Appl. Phys.87(9), 4268–4273 (2000). [CrossRef]
  46. P. J. Fallon, V. S. Veerasamy, C. A. Davis, J. Robertson, G. A. J. Amaratunga, W. I. Milne, and J. Koskinen, “Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy,” Phys. Rev. B Condens. Matter48(7), 4777–4782 (1993). [CrossRef] [PubMed]
  47. B. K. Tay, X. Shi, L. K. Cheah, and D. I. Flynn, “Growth conditions and properties of tetrahedral amorphous carbon films,” Thin Solid Films308–309, 199–203 (1997). [CrossRef]
  48. T. A. Friedmann, J. P. Sullivan, J. A. Knapp, D. R. Tallant, D. M. Follstaedt, D. L. Medlin, and P. B. Mirkarimi, “Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond,” Appl. Phys. Lett.71(26), 3820–3822 (1997). [CrossRef]
  49. A. A. Balandin, M. Shamsa, W. L. Liu, C. Casiraghi, and A. C. Ferrari, “Thermal conductivity of ultrathin tetrahedral amorphous carbon films,” Appl. Phys. Lett.93(4), 043115 (2008). [CrossRef]
  50. G. Reiße and S. Weißmantel, “Excimer-Laser Assisted Deposition of Carbon and Boron Nitride-Based High-Temperature Superconducting Films,” in Excimer Laser Technology, Part II, D. Basting, G. Marowsky, eds., chapter 17, p. 335–350, Springer Berlin Heidelberg, 2005.
  51. R. Delmdahl, S. Weissmantel, and G. Reisse, “Diamondlike carbon films,” Adv. Mater. Process.168, 23–25 (2010).
  52. M. Chhowalla, Y. Yin, G. A. J. Amaratunga, D. R. McKenzie, and T. Frauenheim, “Highly tetrahedral amorphous carbon films with low stress,” Appl. Phys. Lett.69(16), 2344–2346 (1996). [CrossRef]
  53. J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep.37(4-6), 129–281 (2002). [CrossRef]
  54. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” At. Data Nucl. Data Tables54(2), 181–342 (1993). [CrossRef]
  55. http://henke.lbl.gov/optical_constants/ .
  56. M. Tan, J. Zhu, A. Liu, Z. Jia, and J. Han, “Effects of mass density on the microhardness and modulus of tetrahedral amorphous carbon films,” Mater. Lett.61(23-24), 4647–4650 (2007). [CrossRef]
  57. Downloaded from the following web of Physical Reference Data, Physics Laboratory at NIST: http://physics.nist.gov/PhysRefData/FFast/Text/cover.html .
  58. M. Altarelli and D. Y. Smith, “Superconvergence and surn rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B9(4), 1290–1298 (1974). [CrossRef]
  59. E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B22(4), 1612–1628 (1980). [CrossRef]
  60. B. Steeg, L. Juha, J. Feldhaus, S. Jacobi, R. Sobierajski, C. Michaelsen, A. Andrejczuk, and J. Krzywinski, “Total reflection amorphous carbon mirrors for vacuum ultraviolet free electron lasers,” Appl. Phys. Lett.84(5), 657–659 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited