OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27587–27601

Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays

Francisco J. Bezares, James P. Long, Orest J. Glembocki, Junpeng Guo, Ronald W. Rendell, Richard Kasica, Loretta Shirey, Jeffrey C. Owrutsky, and Joshua D. Caldwell  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 27587-27601 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1523 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mie-resonances in vertical, small aspect-ratio and subwavelength silicon nanopillars are investigated using visible bright-field µ-reflection measurements and Raman scattering. Pillar-to-pillar interactions were examined by comparing randomly to periodically arranged arrays with systematic variations in nanopillar diameter and array pitch. First- and second-order Mie resonances are observed in reflectance spectra as pronounced dips with minimum reflectances of several percent, suggesting an alternative approach to fabricating a perfect absorber. The resonant wavelengths shift approximately linearly with nanopillar diameter, which enables a simple empirical description of the resonance condition. In addition, resonances are also significantly affected by array density, with an overall oscillating blue shift as the pitch is reduced. Finite-element method and finite-difference time-domain simulations agree closely with experimental results and provide valuable insight into the nature of the dielectric resonance modes, including a surprisingly small influence of the substrate on resonance wavelength. To probe local fields within the Si nanopillars, µ-Raman scattering measurements were also conducted that confirm enhanced optical fields in the pillars when excited on-resonance.

© 2013 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(290.4020) Scattering : Mie theory
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Photonic Crystals

Original Manuscript: July 26, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: October 17, 2013
Published: November 4, 2013

Francisco J. Bezares, James P. Long, Orest J. Glembocki, Junpeng Guo, Ronald W. Rendell, Richard Kasica, Loretta Shirey, Jeffrey C. Owrutsky, and Joshua D. Caldwell, "Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays," Opt. Express 21, 27587-27601 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Annalen der Physik25, 377–445 (1908). [CrossRef]
  2. K. B. Biggs, J. P. Camden, J. N. Anker, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time,” J. Phys. Chem. A113(16), 4581–4586 (2009). [CrossRef] [PubMed]
  3. E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009). [CrossRef]
  4. K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995). [CrossRef]
  5. M. S. Anderson, “Enhanced infrared absorption with dielectric nanoparticles,” Appl. Phys. Lett.83(14), 2964–2966 (2003). [CrossRef]
  6. S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012). [CrossRef] [PubMed]
  7. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(5), 59 (2010). [CrossRef] [PubMed]
  8. A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt.9(3), 265–270 (2007). [CrossRef]
  9. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009). [CrossRef]
  10. J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013). [CrossRef] [PubMed]
  11. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011). [CrossRef] [PubMed]
  12. T. J. Kippenberg and K. J. Vahala, Cavity opto-menchanics in practical applications of microresonators in optics and photonics (CRC Press, 2009).
  13. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3, 692 (2012). [CrossRef] [PubMed]
  14. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express19(25), 25729–25740 (2011). [CrossRef] [PubMed]
  15. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12(12), 60–69 (2009). [CrossRef]
  16. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17(26), 24084–24095 (2009). [CrossRef] [PubMed]
  17. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012). [CrossRef] [PubMed]
  18. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013). [CrossRef] [PubMed]
  19. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  20. A. M. Lakhani, K. Yu, and M. C. Wu, “Lasing in subwavelength semiconductor nanopatches,” Semicond. Sci. Technol.26(1), 014013 (2011). [CrossRef]
  21. V. G. Bordo, “Spontaneous emission in a cylindrical nanocavity: ab initio analytical approach,” SPIE Proc. 8424, 84240L–1 (2012). [CrossRef]
  22. Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012). [CrossRef] [PubMed]
  23. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004). [CrossRef]
  24. N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002). [CrossRef]
  25. J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011). [CrossRef] [PubMed]
  26. R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express18(5), 4526–4537 (2010). [CrossRef] [PubMed]
  27. B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays,” Opt. Express20(25), 27725–27739 (2012). [CrossRef] [PubMed]
  28. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  29. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  30. H. Yu, “Enhanced Si thin film solar cells short-circuit current with rational-designed Si nano-pillar array surface texturing,” SPIE Proc. 8312, 83120G–1 (2011).
  31. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010). [CrossRef] [PubMed]
  32. D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, 1986).
  33. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009). [CrossRef] [PubMed]
  34. L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett.11(4), 1463–1468 (2011). [CrossRef] [PubMed]
  35. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010). [CrossRef]
  36. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express20(18), 20599–20604 (2012). [CrossRef] [PubMed]
  37. O. Merchiers, F. Moreno, F. González, and J. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76(4), 043834 (2007). [CrossRef]
  38. M. Khorasaninejad, N. Dhindsa, J. Walia, S. Patchett, and S. S. Saini, “Highly enhanced Raman scattering from coupled vertical silicon nanowire arrays,” Appl. Phys. Lett.101(17), 173114 (2012). [CrossRef]
  39. R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays : negative refraction and dipolar interactions,” J. Opt. Soc. Am. B27(9), 1819–1827 (2010). [CrossRef]
  40. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003). [CrossRef]
  41. W. L. Auguie, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010). [CrossRef]
  42. L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006). [CrossRef] [PubMed]
  43. G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008). [CrossRef] [PubMed]
  44. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010). [CrossRef] [PubMed]
  45. F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012). [CrossRef]
  46. J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011). [CrossRef] [PubMed]
  47. E. D. Palik, Handbook of Optical Constants of Solids, 2nd ed. (Academic Press, 1998).
  48. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012). [CrossRef] [PubMed]
  49. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998). [CrossRef]
  50. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett.33(20), 2398–2400 (2008). [CrossRef] [PubMed]
  51. H. Shi, J. G. Ok, H. Won Baac, and L. Jay Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett.99(21), 211103 (2011). [CrossRef]
  52. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998). [CrossRef]
  53. H. C. van der Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  54. Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express20(13), 13847–13856 (2012). [CrossRef] [PubMed]
  55. D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech.32(12), 1609–1616 (1984). [CrossRef]
  56. D. Karfez and A. A. Kishk, “Dielectric resonator antenna: possible candidate for antenna arrays,” Proc. VITEL 2002, International Symposium on Telecommunications: Next Generation Networks and Beyond (2002).
  57. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  58. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110(37), 18243–18253 (2006). [CrossRef] [PubMed]
  59. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography : tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B104(45), 10549–10556 (2000). [CrossRef]
  60. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000). [CrossRef] [PubMed]
  61. D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express19(16), 15047–15061 (2011). [CrossRef] [PubMed]
  62. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B2(6), 931 (1985). [CrossRef]
  63. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012). [CrossRef] [PubMed]
  64. A. I. Zhmakin, “Enhancement of light extraction from light emmiting diodes,” Phys. Rep.498(4–5), 189–241 (2011). [CrossRef]
  65. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010). [CrossRef] [PubMed]
  66. F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited