OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27602–27610

Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips

Stefania D’Agostino, Filippo Alpeggiani, and Lucio Claudio Andreani  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 27602-27610 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work sharp silver nanotips are analyzed and proposed as useful plasmonic tools to reduce the threshold for the onset of strong coupling in the electromagnetic interaction of a point-like emitter with localized surface plasmons. If compared to similarly-sized spherical nanoparticles, conically-shaped nanoparticles turn out to be extremely useful to reduce the oscillator strength requirements for the emitting dipole, a reduction of the threshold by one sixth being obtained in a double cone configuration. Moreover the transition to the strong coupling regime is analyzed for several cone apertures, revealing a nonmonotonic behavior with the appearance of an optimal cone geometry. The emitted-light spectrum is obtained from the computation of the perturbative decay rate and photonic Lamb shift in the classical framework of the Discrete Dipole Approximation. This combined classical-quantum electrodynamics treatment is useful for the theoretical investigation on nonperturbative light-matter interactions involving complex shaped nanoparticles or aggregates.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:

Original Manuscript: July 29, 2013
Revised Manuscript: October 10, 2013
Manuscript Accepted: October 11, 2013
Published: November 4, 2013

Stefania D’Agostino, Filippo Alpeggiani, and Lucio Claudio Andreani, "Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips," Opt. Express 21, 27602-27610 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Haroche and J.-M. Raimond, Exploring the Quantum : Atoms, Cavities and Photons (Oxford University, 2006). [CrossRef]
  2. C. Ciuti and I. Carusotto, “Input-output theory of cavities in the ultra-strong coupling regime: the case of time-independent cavity parameters,” Phys. Rev. A74, 033811 (2006). [CrossRef]
  3. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010). [CrossRef]
  4. R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, “Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime,” Phys. Rev. Lett.110, 243601 (2013). [CrossRef]
  5. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004). [CrossRef] [PubMed]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004). [CrossRef] [PubMed]
  7. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005). [CrossRef] [PubMed]
  8. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007). [CrossRef] [PubMed]
  9. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004). [CrossRef] [PubMed]
  10. A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77, 115403 (2008). [CrossRef]
  11. E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A82, 043845 (2010). [CrossRef]
  12. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010). [CrossRef] [PubMed]
  13. C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B85, 075303 (2012). [CrossRef]
  14. Y. He, C. Jiang, B. Chen, J.-J. Li, and K.-D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett.37, 2943–2945 (2012). [CrossRef] [PubMed]
  15. A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett.109, 073002 (2012). [CrossRef] [PubMed]
  16. F. Alpeggiani, S. D’Agostino, and L. C. Andreani, “Surface plasmons and strong light-matter coupling in metallic nanoshells,” Phys. Rev. B86, 035421 (2012). [CrossRef]
  17. M. M. Dvoynenko and J. K. Wang, “Revisiting strong coupling between a single molecule and surface plasmons,” Opt Lett.38, 760–762 (2013). [CrossRef] [PubMed]
  18. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006). [CrossRef]
  19. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007). [CrossRef] [PubMed]
  20. Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008). [CrossRef] [PubMed]
  21. J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009). [CrossRef]
  22. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009). [CrossRef]
  23. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field–mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett.13(7), 3281–3286 (2013). [CrossRef]
  24. L.C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60, 13276–13279 (1999). [CrossRef]
  25. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994). [CrossRef]
  26. M. A. Yurkin and A. G. Hoekstra, ADDA, available at http://code.google.com/p/a-dda/ .
  27. S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B87, 205413 (2013). [CrossRef]
  28. S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole Decay Rates Engineering via Silver Nanocones”, Plasmonics8, 1079–1086 (2013). [CrossRef]
  29. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008). [CrossRef] [PubMed]
  30. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010). [CrossRef]
  31. F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19, 22268 (2011). [CrossRef] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  33. Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited