OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27611–27621

Tunable hyperchromatic lens system for confocal hyperspectral sensing

Phuong-Ha Cu-Nguyen, Adrian Grewe, Matthias Hillenbrand, Stefan Sinzinger, Andreas Seifert, and Hans Zappe  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 27611-27621 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1915 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new approach for confocal hyperspectral sensing based on the combination of a diffractive optical element and a tunable membrane fluidic lens is demonstrated. This highly compact lens system is designed to maximize the longitudinal chromatic aberration and select a narrow spectral band by spatial filtering. Changing the curvature of the fluidic lens allows the selected band to be scanned over the whole given spectrum. A hybrid prototype with an integrated electro-magnetic micro-actuator has been realized to demonstrate the functionality of the system. Experimental results show that the spectrum transmitted by the system can be tuned over the entire visible wavelength range, from 450 to 900 nm with a narrow and almost constant linewidth of less than 15 nm. Typical response time for scanning the spectrum by 310 nm is less than 40 ms and the lens system shows a highly linear relationship with the driving current.

© 2013 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4830) Optical design and fabrication : Systems design
(230.3990) Optical devices : Micro-optical devices
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: July 31, 2013
Revised Manuscript: October 19, 2013
Manuscript Accepted: October 20, 2013
Published: November 4, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Phuong-Ha Cu-Nguyen, Adrian Grewe, Matthias Hillenbrand, Stefan Sinzinger, Andreas Seifert, and Hans Zappe, "Tunable hyperchromatic lens system for confocal hyperspectral sensing," Opt. Express 21, 27611-27621 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C.-I. Chang, Hyperspectral Imaging : Techniques for Spectral Detection and Classification (Kluwer Academic/Plenum Publishers, 2003).
  2. G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008). [CrossRef]
  3. S. J. Kim, F. Deng, M. S. Brown, “Visual enhancement of old documents with hyperspectral imaging,” Pattern Recognit. 44, 1461–1469 (2011). [CrossRef]
  4. Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535, 79–87 (2005). [CrossRef]
  5. F. Kruse, J. Boardman, J. Huntington, “Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping,” Geosci. Remote Sens. 41, 1388–1400 (2003). [CrossRef]
  6. F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012). [CrossRef]
  7. P. Mouroulis, M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39, 808–816 (2000). [CrossRef]
  8. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000). [CrossRef]
  9. H. R. Morris, C. C. Hoyt, P. J. Treado, “Imaging spectrometers for fluorescence and raman microscopy: Acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994). [CrossRef]
  10. R. W. Slawson, Z. Ninkov, E. P. Horch, “Hyperspectral imaging: Wide area spectrophotometry using a liquid crystal tunable filter,” Astr. Soc. P. 111, 621–626 (1999). [CrossRef]
  11. O. Aharon, I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17, 11426–11433 (2009). [CrossRef] [PubMed]
  12. K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).
  13. A. Grewe, M. Hillenbrand, S. Sinzinger, “Bildgebende hyperspektrale Sensorik unter Einsatz verstimmbarer Optiken,” Photonik 1/2013, 38–41 (2013).
  14. M. Hillenbrand, A. Grewe, S. Sinzinger, “Parallelized chromatic confocal systems enable efficient spectral information coding,” Opt. Des. Eng., SPIE Newsroom (2013).
  15. H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010). [CrossRef]
  16. A. Werber, H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44, 3238–3245 (2005). [CrossRef] [PubMed]
  17. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007).
  18. H. P. Herzig, ed., Micro-optics: Elements, Systems and Applications (Taylor & Francis, 1997).
  19. P. Liebetraut, P. Waibel, P. H. C. Nguyen, P. Reith, B. Aatz, H. Zappe, “Optical properties of liquids for fluidic optics,” Appl. Opt. 52, 3203–3215 (2013). [CrossRef] [PubMed]
  20. W. Zhang, H. Zappe, A. Seifert, “Polyacrylate tunable microlens with on-chip thermopneumatic actuation,” in “International Conference on Optical MEMS and Nanophotonics,” (2012), pp. 57–58. [CrossRef]
  21. W. Zhang, H. Zappe, A. Seifert, “Polyacrylate membranes for tunable liquid-filled microlenses,” Opt. Eng. 52, 046601–046601 (2013). [CrossRef]
  22. A. R. Jha, “Narrowband solid state acousto-optic tunable filter,” in “Proceedings of Microwave and Optoelectronics Conference, SBMO/IEEE MTT-S International,” (1995), pp. 287–291. [CrossRef]
  23. J. P. Bentley, Principles of Measurement Systems (Pearson, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited