OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27759–27769

Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation

Fang Ren, Hideaki Takashima, Yoshito Tanaka, Hideki Fujiwara, and Keiji Sasaki  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 27759-27769 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

© 2013 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: August 20, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 27, 2013
Published: November 5, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Fang Ren, Hideaki Takashima, Yoshito Tanaka, Hideki Fujiwara, and Keiji Sasaki, "Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation," Opt. Express 21, 27759-27769 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. A. J. Haes and R. P. Van Duyne, “Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy,” Proc. SPIE5221, 47–58 (2003). [CrossRef]
  3. J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006). [CrossRef] [PubMed]
  4. A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron38(4), 427–437 (2007). [CrossRef] [PubMed]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1–2), 3–15 (1999). [CrossRef]
  7. F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012). [CrossRef]
  8. B. S. Yeo, W. Zhang, C. Vannier, and R. Zenobi, “Enhancement of Raman signals with silver-coated tips,” Appl. Spectrosc.60(10), 1142–1147 (2006). [CrossRef] [PubMed]
  9. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005). [CrossRef] [PubMed]
  10. W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002). [CrossRef]
  11. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007). [CrossRef] [PubMed]
  12. S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002). [CrossRef]
  13. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express20(1), 220–227 (2012). [CrossRef] [PubMed]
  14. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  15. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem.54(1-2), 16–24 (1999). [CrossRef]
  16. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003). [CrossRef] [PubMed]
  17. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012). [CrossRef] [PubMed]
  18. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett.86(7), 071103 (2005). [CrossRef]
  19. P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012). [CrossRef] [PubMed]
  20. F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distribution and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242(4-6), 445–455 (2004). [CrossRef]
  21. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  22. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  23. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109(6), 063602 (2012). [CrossRef] [PubMed]
  24. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11(10), 4362–4365 (2011). [CrossRef] [PubMed]
  25. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express20(10), 10490–10497 (2012). [CrossRef] [PubMed]
  26. F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70(6), 063403 (2004). [CrossRef]
  27. F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73(1), 013819 (2006). [CrossRef]
  28. F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72(3), 032509 (2005). [CrossRef]
  29. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett.82(20), 4014–4017 (1999). [CrossRef]
  30. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90(10), 101103 (2007). [CrossRef]
  31. F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE8463, 846305 (2012). [CrossRef]
  32. Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B110(36), 17906–17911 (2006). [CrossRef] [PubMed]
  33. D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic meterials,” Acc. Chem. Res.30(5), 204–212 (1997). [CrossRef]
  34. K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys.320(2-3), 118–124 (2006). [CrossRef]
  35. I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B101(27), 5263–5276 (1997). [CrossRef]
  36. A. Hartung, S. Brueckner, and H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express18(4), 3754–3761 (2010). [CrossRef] [PubMed]
  37. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19(9), 8596–8601 (2011). [CrossRef] [PubMed]
  38. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89(12), 121107 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited