OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27780–27788

Rayleigh scattering boosted multi-GHz displacement sensitivity in whispering gallery opto-mechanical resonators

Siddharth Tallur and Sunil A. Bhave  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27780-27788 (2013)
http://dx.doi.org/10.1364/OE.21.027780


View Full Text Article

Enhanced HTML    Acrobat PDF (1963 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Finite photon lifetimes for light fields in an opto-mechanical cavity impose a bandwidth limit on displacement sensing at mechanical resonance frequencies beyond the loaded cavity photon decay rate. Opto-mechanical modulation efficiency can be enhanced via multi-GHz transduction techniques such as piezo-opto-mechanics at the cost of on-chip integration. In this paper, we present a novel high bandwidth displacement sense scheme employing Rayleigh scattering in photonic resonators. Using this technique in conjunction with on-chip electrostatic drive in silicon enables efficient modulation at frequencies up to 9.1GHz. Being independent of the drive mechanism, this scheme could readily be extended to piezo-opto-mechanical and all optical transduced systems.

© 2013 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(290.5870) Scattering : Scattering, Rayleigh
(230.4685) Optical devices : Optical microelectromechanical devices
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

History
Original Manuscript: September 6, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 28, 2013
Published: November 5, 2013

Citation
Siddharth Tallur and Sunil A. Bhave, "Rayleigh scattering boosted multi-GHz displacement sensitivity in whispering gallery opto-mechanical resonators," Opt. Express 21, 27780-27788 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27780


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science328, 812–813 (2010). [CrossRef] [PubMed]
  2. S. Tallur and S. A. Bhave, “A silicon electromechanical photodetector,” Nano Lett.13, 2760–2765 (2013). [CrossRef] [PubMed]
  3. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321, 1172–1176 (2008). [CrossRef] [PubMed]
  4. P. Meystre, “Cool vibrations,” Science333, 832–833 (2011). [CrossRef] [PubMed]
  5. S. Tallur and S. A. Bhave, “Electro-mechanically induced GHz rate optical frequency modulation in silicon,” IEEE. Photonics J.4, 1474–1483 (2012). [CrossRef]
  6. M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).
  7. T. Faust, P. Krenn, S. Manus, J. P. Kotthaus, and E. M. Weig, “Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature,” Nature Communications3, 728 (2012). [CrossRef] [PubMed]
  8. S. Tallur and S. A. Bhave, “Monolithic 2GHz electrostatically actuated MEMS oscillator with opto-mechanical frequency multiplier,” Proceedings of IEEE International Conf. on Solid-State Sensors, Actuators and Microsystems, 1472–1475 (2013).
  9. B. P. Otis and J. M. Rabaey, “A 300-μ W 1.9-GHz CMOS oscillator utilizing micromachined resonators,” IEEE Journal of Solid-State Circuits38, 1271–1274 (2003). [CrossRef]
  10. R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012). [CrossRef]
  11. C. Zuo, J. Van der Spiegel, and G. Piazza, “1.05 GHz MEMS oscillator based on lateral-field-excited piezoelectric AlN resonators,” Proceedings of IEEE International Frequency Control Symposium, 381–384 (2009).
  12. L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocav-ity with high quality factors,” Appl. Phys. Lett.102, 153507 (2013). [CrossRef]
  13. A. Vainsencher, J. Bochmann, D. D. Awschalom, and A. N. Cleland, “Optomechanics and integrated photonics and in aluminum nitride,” APS March Meeting 201358,March 18–22, Baltimore, MD (2013) http://meetings.aps.org/link/BAPS.2013.MAR.T41.9 .
  14. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B6, 1051–1057 (2000). [CrossRef]
  15. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004). [CrossRef]
  16. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.19, 1669–1671 (2002). [CrossRef]
  17. D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” œ20, 18091–18096 (2012).
  18. T. P. Mayer Alegre, R. Perahia, and O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” œ19, 5658–5669 (2011).
  19. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett.101, 081115 (2012). [CrossRef]
  20. Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett.93, 081113 (2008). [CrossRef]
  21. G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique12, 800–816 (2011). [CrossRef]
  22. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nature Photonics3, 478–483 (2009). [CrossRef]
  23. S. Tallur, T. J. Cheng, S. Sridaran, and S. A. Bhave, “Motional impedance analysis: bridging the gap in dielectric transduction,” Proceedings of IEEE International Frequency Control Symposium, 135–138 (2011).
  24. M.-C. Tien, S. Mathai, J. Yao, and M. C. Wu, “Tunable MEMS actuated microring resonators,” Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, 177–178 (2007). [CrossRef]
  25. M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett.109, 063601 (2012). [CrossRef] [PubMed]
  26. K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited