OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27796–27801

Ultrasensitive refractive index sensor based on the resonant scattering effect between double air circular-holes on silicon waveguides

Jun Song, Bojun Li, Linchun Chen, and Xuan Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27796-27801 (2013)
http://dx.doi.org/10.1364/OE.21.027796


View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, we have proposed a sensitive refractive index sensor design by integrating a circular-hole defect with an etched diffraction grating (EDG) spectrometer based on amorphous silicon photonic platforms. In the present paper, we will show that a much better sensitivity (~17422 nm/RIU) can be obtained by using double circular-holes with an appropriate interval. The influence of the double-hole interval on the performance of sensing applications is also characterized. A sinusoidal pattern of the sensitivity can be found as the interval increases. However, the intensity of the resonant peak (i.e., the detectability for sensing applications) significantly oscillates as the interval varies.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors

ToC Category:
Integrated Optics

History
Original Manuscript: September 23, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 26, 2013
Published: November 5, 2013

Citation
Jun Song, Bojun Li, Linchun Chen, and Xuan Li, "Ultrasensitive refractive index sensor based on the resonant scattering effect between double air circular-holes on silicon waveguides," Opt. Express 21, 27796-27801 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27796


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008). [CrossRef] [PubMed]
  2. L. P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012). [CrossRef] [PubMed]
  3. H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sensor Actuat. Biol. Chem.161(1), 261–268 (2012).
  4. S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).
  5. Y. K. Gao, Z. M. Xin, Q. Q. Gan, X. H. Cheng, and F. J. Bartoli, “Plasmonic interferometers for label-free multiplexed sensing,” Opt. Express21(5), 5859–5871 (2013). [CrossRef] [PubMed]
  6. L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Opt. Lett.37(18), 3873–3875 (2012). [CrossRef] [PubMed]
  7. N. Krishnaswamy, T. Srinivas, G. M. Rao, and M. M. Varma, “Analysis of integrated optofluidic lab-on-a-chip sensor based on refractive index and absorbance sensing,” IEEE Sens. J.13(5), 1730–1741 (2013). [CrossRef]
  8. R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012). [CrossRef]
  9. S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, “Highly sensitive miniaturized refractive index sensor based on Au-Ag surface gratings on a planar optical waveguide,” J. Lightwave Technol.28(17), 2469–2476 (2010). [CrossRef]
  10. R. Garg and K. Thyagarajan, “Polarization-based refractive index sensor using dual asymmetric long-period gratings in ridge waveguides,” Appl. Opt.52(10), 2086–2092 (2013). [CrossRef] [PubMed]
  11. H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express20(19), 20934–20950 (2012). [CrossRef] [PubMed]
  12. G. Overton, “Nanophotonic sensing silicon nanowire arrays form color-coded refractive-index sensors,” Laser Focus World48(9), 19–20 (2012).
  13. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express21(7), 7994–8006 (2013). [CrossRef] [PubMed]
  14. Y. Atsumi, D. X. Xu, A. Delâge, J. H. Schmid, M. Vachon, P. Cheben, S. Janz, N. Nishiyama, and S. Arai, “Simultaneous retrieval of fluidic refractive index and surface adsorbed molecular film thickness using silicon wire waveguide biosensors,” Opt. Express20(24), 26969–26977 (2012). [CrossRef] [PubMed]
  15. J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012). [CrossRef]
  16. J. Song, X. Zhou, Y. Z. Li, and X. Li, “On-chip spectrometer with a circular-hole defect for optical sensing applications,” Opt. Express20(17), 19226–19231 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited