OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27804–27815

Importance of the microscopic effects on the linewidth enhancement factor of quantum cascade lasers

Tao Liu, Kenneth E. Lee, and Qi Jie Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27804-27815 (2013)
http://dx.doi.org/10.1364/OE.21.027804


View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microscopic density matrix analysis on the linewidth enhancement factor (LEF) of both mid-infrared (mid-IR) and Terahertz (THz) quantum cascade lasers (QCLs) is reported, taking into account of the many body Coulomb interactions, coherence of resonant-tunneling transport and non-parabolicity. A non-zero LEF at the gain peak is obtained due to these combined microscopic effects. The results show that, for mid-IR QCLs, the many body Coulomb interaction and non-parabolicity contribute greatly to the non-zero LEF. In contrast, for THz QCLs, the many body Coulomb interactions and the resonant-tunneling effects greatly influence the LEF resulting in a non-zero value at the gain peak. This microscopic model not only partially explains the non-zero LEF of QCLs at the gain peak, which observed in the experiments for a while but cannot be explicitly explained, but also can be employed to improve the active region designs so as to reduce the LEF by optimizing the corresponding parameters.

© 2013 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 5, 2013
Revised Manuscript: October 29, 2013
Manuscript Accepted: October 29, 2013
Published: November 6, 2013

Citation
Tao Liu, Kenneth E. Lee, and Qi Jie Wang, "Importance of the microscopic effects on the linewidth enhancement factor of quantum cascade lasers," Opt. Express 21, 27804-27815 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27804


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002). [CrossRef] [PubMed]
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  3. C. H. Henry, “Theory of the linewidth of semiconductor-lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982). [CrossRef]
  4. T. Chattopadhyay and P. Bhattacharyya, “Role of linewidth enhancement factor on the frequency response of the synchronized quantum cascade laser,” Opt. Commun.309, 349–354 (2013). [CrossRef]
  5. M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor-lasers - an overview,” IEEE J. Quantum Electron.23(1), 9–29 (1987). [CrossRef]
  6. M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” J. Appl. Phys.94(8), 5426–5428 (2003). [CrossRef]
  7. R. P. Green, J. H. Xu, L. Mahler, A. Tredicucci, F. Beltram, G. Giuliani, H. E. Beere, and D. A. Ritchie, “Linewidth enhancement factor of terahertz quantum cascade lasers,” Appl. Phys. Lett.92(7), 071106 (2008). [CrossRef]
  8. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006). [CrossRef]
  9. J. von Staden, T. Gensty, W. Elsässer, G. Giuliani, and C. Mann, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett.31(17), 2574–2576 (2006). [CrossRef] [PubMed]
  10. N. Kumazaki, Y. Takagi, M. Ishihara, K. Kasahara, A. Sugiyama, N. Akikusa, and T. Edamura, “Detuning characteristics of the linewidth enhancement factor of a midinfrared quantum cascade laser,” Appl. Phys. Lett.92(12), 121104 (2008). [CrossRef]
  11. J. Kim, M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers,” IEEE J. Quantum Electron.40(12), 1663–1674 (2004). [CrossRef]
  12. T. Liu, K. E. Lee, and Q. J. Wang, “Microscopic density matrix model for optical gain of terahertz quantum cascade lasers: Many-body, nonparabolicity, and resonant tunneling effects,” Phys. Rev. B86(23), 235306 (2012). [CrossRef]
  13. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ≈8.5 μm,” Appl. Phys. Lett.72(12), 1430–1432 (1998). [CrossRef]
  14. W. W. Chow, S. W. Koch, and M. S. I. I. I. Semiconductor-Laser Physics, (Springer-Verlag, Berlin, 1994).
  15. S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B80(24), 245316 (2009). [CrossRef]
  16. C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power, continuous-wave, current-tunable, single-mode quantum-cascade distributed-feedback lasers at lambda ~5.2 and lambda ~7.95 μm,” Opt. Lett.25(4), 230–232 (2000). [CrossRef] [PubMed]
  17. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012). [CrossRef] [PubMed]
  18. U. Ekenberg, “Nonparabolicity effects in a quantum well: sublevel shift, parallel mass, and Landau levels,” Phys. Rev. B Condens. Matter40(11), 7714–7726 (1989). [CrossRef] [PubMed]
  19. S. Panda, B. K. Panda, and S. Fung, “Effect of conduction band nonparabolicity on the dark current in a quantum well infrared detector,” J. Appl. Phys.101(4), 043705 (2007). [CrossRef]
  20. E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density-matrix model applied to three-well terahertz quantum cascade lasers,” Phys. Rev. B81(20), 205311 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited