OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27816–27825

Nanofocusing of light using three-dimensional plasmonic mode conversion

Shinmo An, Hyun-Shik Lee, Yong-Beom Jeong, Young Chul Jun, Seung Gol Lee, Se-Guen Park, El-Hang Lee, and O. Beom-Hoan  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27816-27825 (2013)
http://dx.doi.org/10.1364/OE.21.027816


View Full Text Article

Enhanced HTML    Acrobat PDF (1663 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Efficient nanofocusing of light into a gap plasmon waveguide using three-dimensional mode conversion in a strip plasmonic directional coupler is proposed. Unlike conventional nanofocusing using tapering structures, a plasmonic directional coupler converts Ez-type odd mode energy into Ey-type gap plasmon mode by controlling phase mismatch and gap spacing. The simulation result shows the maximum electric field intensity increases up to 58.1 times the input intensity, and 17.3% of the light is focused on the nano gap region.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5950) Physical optics : Self-focusing

ToC Category:
Plasmonics

History
Original Manuscript: July 22, 2013
Revised Manuscript: September 30, 2013
Manuscript Accepted: October 8, 2013
Published: November 6, 2013

Citation
Shinmo An, Hyun-Shik Lee, Yong-Beom Jeong, Young Chul Jun, Seung Gol Lee, Se-Guen Park, El-Hang Lee, and O. Beom-Hoan, "Nanofocusing of light using three-dimensional plasmonic mode conversion," Opt. Express 21, 27816-27825 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27816


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  2. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  3. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007). [CrossRef] [PubMed]
  4. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009). [CrossRef]
  5. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005). [CrossRef] [PubMed]
  6. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  7. P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys.102(3), 033112 (2007). [CrossRef]
  8. Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008). [CrossRef]
  9. A. Hosseini, H. Nejati, and Y. Massoud, “Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides,” Opt. Express15(23), 15280–15286 (2007). [CrossRef] [PubMed]
  10. H. Lee, J. Song, and E. Lee, “An effective excitation of the lightwaves in the plasmonic nanostrip by way of directional coupling,” J. Korean Phys. Soc.57(61), 1577–1580 (2010). [CrossRef]
  11. J. Song, H. Lee, B. O. S. Lee, S. Park, and E. Lee, “Design of nanoring resonators made of metal-insulator-metal nanostrip waveguides,” J. Korean Phys. Soc.57(61), 1789–1793 (2010).
  12. D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys.100(1), 013101 (2006). [CrossRef]
  13. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005). [CrossRef] [PubMed]
  14. G. B. Hoffman and R. M. Reano, “Vertical coupling between gap plasmon waveguides,” Opt. Express16(17), 12677–12687 (2008). [CrossRef] [PubMed]
  15. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett.29(17), 1992–1994 (2004). [CrossRef] [PubMed]
  16. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006). [CrossRef] [PubMed]
  17. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009). [CrossRef] [PubMed]
  18. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009). [CrossRef] [PubMed]
  19. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009). [CrossRef] [PubMed]
  20. E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic Nanofocusing in a Dielectric Wedge,” Nano Lett.10(9), 3665–3669 (2010). [CrossRef] [PubMed]
  21. S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35(4), 541–543 (2010). [CrossRef] [PubMed]
  22. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011). [CrossRef]
  23. M. I. Stockman, “Erratum: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides [Phys. Rev. Lett. 93, 137404 (2004)],” Phys. Rev. Lett.106, 019901 (2011). [CrossRef]
  24. H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012). [CrossRef]
  25. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991,Vol. 2).
  26. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005). [CrossRef]
  27. S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited