OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27865–27872

Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level

Rikizo Ikuta, Toshiki Kobayashi, Hiroshi Kato, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Mikio Fujiwara, Takashi Yamamoto, Masahide Sasaki, Zhen Wang, Masato Koashi, and Nobuyuki Imoto  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27865-27872 (2013)
http://dx.doi.org/10.1364/OE.21.027865


View Full Text Article

Enhanced HTML    Acrobat PDF (903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate that both of the two output light pulses of different wavelengths from a wavelength converter with various branching ratios preserve phase information of an input light at a single-photon level. In our experiment, we converted temporally-separated two coherent light pulses with average photon numbers of ∼ 0.1 at 780 nm to light pulses at 1522 nm by using difference-frequency generation in a periodically-poled lithium niobate waveguide. We observed an interference between temporally-separated two modes for both the converted and the unconverted light pulses at various values of the conversion efficiency. We observed interference visibilities greater than 0.88 without suppressing the background noises for any value of the conversion efficiency the wavelength converter achieves. At a conversion efficiency of ∼ 0.5, the observed visibilities are 0.98 for the unconverted light and 0.99 for the converted light. Such a phase-preserving wavelength converter with high visibilities will be useful for manipulating quantum states encoded in the frequency degrees of freedom.

© 2013 OSA

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(190.4223) Nonlinear optics : Nonlinear wave mixing
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Quantum Optics

History
Original Manuscript: September 12, 2013
Revised Manuscript: October 27, 2013
Manuscript Accepted: October 28, 2013
Published: November 6, 2013

Citation
Rikizo Ikuta, Toshiki Kobayashi, Hiroshi Kato, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Mikio Fujiwara, Takashi Yamamoto, Masahide Sasaki, Zhen Wang, Masato Koashi, and Nobuyuki Imoto, "Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level," Opt. Express 21, 27865-27872 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Kumar, “Quantum frequency conversion,” Opt. Lett.15, 1476–1478 (1990). [CrossRef] [PubMed]
  2. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30, 1725–1727 (2005). [CrossRef] [PubMed]
  3. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010). [CrossRef]
  4. H. Takesue, “Erasing Distinguishability Using Quantum Frequency Up-Conversion,” Phys. Rev. Lett.101, 173901 (2008). [CrossRef] [PubMed]
  5. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005). [CrossRef] [PubMed]
  6. Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett.105, 260502 (2010). [CrossRef]
  7. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 1544 (2011). [CrossRef] [PubMed]
  8. S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett.109, 147404 (2012). [CrossRef] [PubMed]
  9. R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A87, 010301 (2013). [CrossRef]
  10. R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A88, 042317 (2013). [CrossRef]
  11. M. Raymer, S. van Enk, C. McKinstrie, and H. McGuinness, “Interference of two photons of different color,” Opt. Commun.283, 747–752 (2010). [CrossRef]
  12. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010). [CrossRef]
  13. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010). [CrossRef] [PubMed]
  14. S. Ramelow, a. Fedrizzi, a. Poppe, N. Langford, and a. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012). [CrossRef]
  15. G. Giorgi, P. Mataloni, and F. De Martini, “Frequency hopping in quantum interferometry: Efficient up-down conversion for qubits and ebits,” Phys. Rev. Lett.90, 027902 (2003). [CrossRef] [PubMed]
  16. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express19, 12825–12836 (2011). [CrossRef] [PubMed]
  17. L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep.521, 69–94 (2012). [CrossRef]
  18. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express17, 17792–17800 (2009). [CrossRef] [PubMed]
  19. S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express17, 23557–23564 (2009). [CrossRef]
  20. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett.35, 2133–2135 (2010). [CrossRef] [PubMed]
  21. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm : performance and noise analysis,” Opt. Express19, 21445–21456 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited