OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27924–27932

Coupled tandem cavities based electro-absorption modulator with asymmetric tandem quantum well for high modulation performance at low driving voltage

Byung Hoon Na, Gun Wu Ju, Hee Ju Choi, Soo Kyung Lee, Sooraj Ravindran, Yong Chul Cho, Yong Hwa Park, Chang Young Park, and Yong Tak Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27924-27932 (2013)
http://dx.doi.org/10.1364/OE.21.027924


View Full Text Article

Enhanced HTML    Acrobat PDF (3961 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a new electro-absorption modulator (EAM) based on coupled tandem cavities (CTC) having asymmetric tandem quantum well (ATQW) structure with separated electrode configuration to achieve large transmittance change over a broad spectral range at low driving voltage for high definition (HD) 3D imaging applications. Our theoretical calculations show that CTC with ATQW structure can provide large transmittance change over a wide spectral range at low driving voltage. By introducing separated electrode configuration, the fabricated EAM having CTC with ATQW structure shows a large transmittance change over 50%, almost three times larger spectral bandwidth compared to that of EAM having single cavity with a single thickness quantum well without significantly increasing the applied voltage. In addition, the CTC with ATQW structure also shows high speed modulation up to 28 MHz for the device having a large area of 2 mm x 0.5 mm. This high transmittance change, large spectral bandwidth and low voltage operation over a large device area for the EAM having CTC with ATQW demonstrates their huge potential as an optical image modulator for HD 3D imaging applications.

© 2013 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(230.4205) Optical devices : Multiple quantum well (MQW) modulators

ToC Category:
Optical Devices

History
Original Manuscript: May 20, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 11, 2013
Published: November 7, 2013

Citation
Byung Hoon Na, Gun Wu Ju, Hee Ju Choi, Soo Kyung Lee, Sooraj Ravindran, Yong Chul Cho, Yong Hwa Park, Chang Young Park, and Yong Tak Lee, "Coupled tandem cavities based electro-absorption modulator with asymmetric tandem quantum well for high modulation performance at low driving voltage," Opt. Express 21, 27924-27932 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27924


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984). [CrossRef]
  2. Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012). [CrossRef]
  3. B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, and Y. T. Lee, “Large aperture asymmetric Fabry Perot modulator based on asymmetric tandem quantum well for low voltage operation,” Opt. Express20(6), 6003–6009 (2012). [CrossRef] [PubMed]
  4. B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, C. Y. Park, and Y. T. Lee, “Wide spectral bandwidth electro-absorption modulator using coupled micro-cavity with asymmetric tandem quantum well,” Opt. Express20(17), 19511–19519 (2012). [CrossRef] [PubMed]
  5. S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013). [CrossRef]
  6. J. A. Trezza, M. C. Larson, S. M. Lord, and J. S. Harris., “Large, low-voltage absorption changes and absorption bistability in GaAs/AlGaAs/InGaAs asymmetric quantum wells,” J. Appl. Phys.74(3), 1972–1978 (1993). [CrossRef]
  7. H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998). [CrossRef]
  8. N. Susa, “Electric-field-induced refractive index change in three-step asymmetric coupled quantum well,” J. Appl. Phys.73(12), 8463–8470 (1993). [CrossRef]
  9. Y. Chan and K. Tada, “Field induced optical effects in coupled quantum wells,” IEEE J. Quantum Electron.27(3), 702–707 (1991). [CrossRef]
  10. J. Thalken, W. Li, S. Haas, and A. F. J. Levi, “Adaptive design of excitonic absorption in broken-symmetry quantum wells,” Appl. Phys. Lett.85(1), 121–123 (2004). [CrossRef]
  11. T. Woodward, J. Cunningham, and W. Y. Jan, “Comparison of stepped‐well and square‐well multiple‐quantum‐well optical modulators,” J. Appl. Phys.78(3), 1411–1414 (1995). [CrossRef]
  12. I. J. Fritz, J. F. Klem, and J. R. Wendt, “Reflectance modulator based on tandem Fabry‐Perot resonators,” Appl. Phys. Lett.59(7), 753–755 (1991). [CrossRef]
  13. K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Stacked-diode electro-absorption modulator,” IEEE Photon. Technol. Lett.6(8), 936–938 (1994). [CrossRef]
  14. M. G. Xu, T. A. Fisher, J. M. Dell, and A. Clark, “Wide optical bandwidth asymmetric Fabry-Perot reflection modulator using the quantum confined Stark effect,” J. Appl. Phys.84(10), 5761–5765 (1998). [CrossRef]
  15. N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005). [CrossRef]
  16. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984). [CrossRef]
  17. K. H. Calhoun and N. M. Jokerst, “AlGaAs/GaAs/AlGaAs thin-film Fabry - Perot modulator on a glass substrate by using alignable epitaxial lift-off,” Opt. Lett.18(11), 882–884 (1993). [CrossRef] [PubMed]
  18. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984). [CrossRef]
  19. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988). [CrossRef]
  20. C. Lin, K. W. Goossen, K. Sadra, J. M. Messe, and C. Weng, “Normally on GaAs/AlAs multiple-quantum well Fabry-Perot transmission modulator with ON/OFF contrast ratio > 7.4,” Appl. Phys. Lett.66(10), 1222–1224 (1995). [CrossRef]
  21. S. A. Alboon and R. G. Lindquist, “Flat top liquid crystal tunable filter using coupled Fabry-Perot cavities,” Opt. Express16(1), 231–236 (2008). [CrossRef] [PubMed]
  22. E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys.105(10), 104906 (2009). [CrossRef]
  23. A. A. M. Saleh and J. Stone, “Two stage Fabry-Perot filters as de-multiplexers in optical FDMA LAN’s,” J. Lightwave Technol.7(2), 323–330 (1989). [CrossRef]
  24. P. G. Goetz, W. S. Rabinovich, S. C. Binari, and J. A. Mittereder, “High-performance Chirped Electrode Design for Cat’s Eye Retro-Reflector Modulators,” IEEE Photon. Technol. Lett.18(21), 2278–2280 (2006). [CrossRef]
  25. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Pearson Prentice Hall, 2007), Chap. 22.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited