OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27933–27945

Towards a versatile active wavelength converter for all-optical networks based on quasi-phase matched intra-cavity difference-frequency generation

Adrián J. Torregrosa, Haroldo Maestre, and Juan Capmany  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27933-27945 (2013)
http://dx.doi.org/10.1364/OE.21.027933


View Full Text Article

Enhanced HTML    Acrobat PDF (3248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.

© 2013 Optical Society of America

OCIS Codes
(160.2260) Materials : Ferroelectrics
(190.0190) Nonlinear optics : Nonlinear optics
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 12, 2013
Revised Manuscript: October 13, 2013
Manuscript Accepted: October 31, 2013
Published: November 7, 2013

Citation
Adrián J. Torregrosa, Haroldo Maestre, and Juan Capmany, "Towards a versatile active wavelength converter for all-optical networks based on quasi-phase matched intra-cavity difference-frequency generation," Opt. Express 21, 27933-27945 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27933


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol.14(6), 955–966 (1996). [CrossRef]
  2. J. M. Yates and M. P. Rumsewicz, “Wavelength converters in dynamically reconfigurable WDM networks,” IEEE Commun. Surv. Tutor.2(2), 2–15 (1999).
  3. K. C. Lee and V. Li, “A wavelength-convertible optical network,” J. Lightwave Technol.11(5), 962–970 (1993). [CrossRef]
  4. H. S. Hamza and J. S. Deogun, “WDM optical interconnects: A balanced design approach,” IEEE/ACM Trans. Netw.15(6), 1565–1578 (2007). [CrossRef]
  5. X. Qin and Y. Yang, “Multicast connection capacity of WDM switching networks with limited wavelength conversion,” IEEE/ACM Trans. Netw.12(3), 526–538 (2004). [CrossRef]
  6. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett.127, 1918–1939 (1962).
  7. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-microm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett.23(13), 1004–1006 (1998). [CrossRef] [PubMed]
  8. For general aspects of fiber optics communications see G. P. Agrawal, Fiber Optic Communication Systems (John Wiley & Sons, 2002).
  9. S. Walklin and J. Conradi, “Multilevel Signaling for Increasing the Reach of 10 Gb/s Lightwave Systems,” J. Lightwave Technol.17(11), 2235–2248 (1999). [CrossRef]
  10. R. Muñoz, R. Martínez, and R. Casellas, “Challenges for GMPLS lightpath provisioning in transparent optical networks: Wavelength constraints in routing and signaling,” IEEE Commun. Mag.47(8), 26–34 (2009). [CrossRef]
  11. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaA1F6:Cr3+: A Promising New Solid-state Laser Material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988). [CrossRef]
  12. A. E. Siegman, “Laser injection locking,” in Lasers (University Science Book, 1986), pp. 1129–1170.
  13. M. Tsunekane, M. Ihara, N. Taguchi, and H. Inaba, “Analysis and design of widely tunable diode-pumped Cr:LiSAF lasers with external grating feedback,” IEEE J. Quantum Electron.34(7), 1288–1296 (1998). [CrossRef]
  14. H. Maestre, A. J. Torregrosa, and J. Capmany, “Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave,” Laser Phys. Lett.10(3), 035806 (2013). [CrossRef]
  15. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007). [CrossRef]
  16. C. R. Fernández-Pousa and J. Capmany, “Dammann grating design of domain-engineered lithium niobate for Equalized wavelength conversion grids,” IEEE Photon. Technol. Lett.17(5), 1037–1039 (2005). [CrossRef]
  17. N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett.24(23), 1750–1752 (1999). [CrossRef] [PubMed]
  18. A. J. Torregrosa, H. Maestre, C. R. Fernández-Pousa, and J. Capmany, “Electro-Optic Reconfiguration of Quasi-Phase Matching in a Dammann Domain Grating for WDM Applications”, Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 1–9, 1790–1791 (2008). [CrossRef]
  19. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999). [CrossRef] [PubMed]
  20. R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron.6(4), 215–223 (1970). [CrossRef]
  21. J. Capmany, J. A. Pereda, V. Bermúdez, D. Callejo, and E. Diéguez, “Laser frequency converter for continuous-wave tunable Ti:sapphire lasers,” Appl. Phys. Lett.79(12), 1751–1753 (2001). [CrossRef]
  22. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:colquiriite lasers,” Opt. Express17(16), 14374–14388 (2009). [CrossRef] [PubMed]
  23. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys.39(8), 3597–3641 (1968). [CrossRef]
  24. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B5(7), 1412–1423 (1988). [CrossRef]
  25. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B96(2-3), 423–432 (2009). [CrossRef]
  26. H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, J. A. Pereda, and J. Capmany, “Widely tuneable dual-wavelength operation of a highly doped erbium fiber laser based on diffraction gratings,” IEEE J. Quantum Electron.47, 1238–1243 (2011).
  27. R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003).
  28. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett.28(3), 194–196 (2003). [CrossRef] [PubMed]
  29. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992). [CrossRef]
  30. M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Elec. Lett.35(12), 978–980 (1999). [CrossRef]
  31. Telecommunication Standardization Sector of International Telecommunication Union, Recommendation ITU-T G.694.1, “Spectral grids for WDM applications: DWDM frequency grid” (2002).
  32. SNLO nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185–1423.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited