OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27964–27980

Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach

Mozhdeh Seifi, Corinne Fournier, Nathalie Grosjean, Loic Méès, Jean-Louis Marié, and Loic Denis  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27964-27980 (2013)
http://dx.doi.org/10.1364/OE.21.027964


View Full Text Article

Enhanced HTML    Acrobat PDF (9596 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital in-line holography was used to study a fast dynamic 3D phenomenon: the evaporation of free-falling diethyl ether droplets. We describe an unsupervised reconstruction algorithm based on an “inverse problems” approach previously developed by our team to accurately reconstruct 3D trajectories and to estimate the droplets’ size in a field of view of 7 × 11 × 20 mm3. A first experiment with non-evaporating droplets established that the radius estimates were accurate to better than 0.1 μm. With evaporating droplets, the vapor around the droplet distorts the diffraction patterns in the holograms. We showed that areas with the strongest distortions can be discarded using an exclusion mask. We achieved radius estimates better than 0.5 μm accuracy for evaporating droplets. Our estimates of the evaporation rate fell within the range predicted by theoretical models.

© 2013 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6640) Image processing : Superresolution
(120.3940) Instrumentation, measurement, and metrology : Metrology
(280.2490) Remote sensing and sensors : Flow diagnostics
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

History
Original Manuscript: June 17, 2013
Revised Manuscript: September 10, 2013
Manuscript Accepted: September 11, 2013
Published: November 7, 2013

Citation
Mozhdeh Seifi, Corinne Fournier, Nathalie Grosjean, Loic Méès, Jean-Louis Marié, and Loic Denis, "Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach," Opt. Express 21, 27964-27980 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27964


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Sommerfeld, H.-H. Qiu, “Experimental studies of spray evaporation in turbulent flow,” International Journal of Heat and Fluid Flow 19, 10–22 (1998). [CrossRef]
  2. S. M. Skippon, Y. Tagaki, “ILIDS measurements of the evaporation of fuel droplets during the intake and compression strokes in a firing lean burn engine,” Technical Report 960830, SAE International, Warrendale, PA (1996).
  3. N. Damaschke, H. Nobach, C. Tropea, “Optical limits of particle concentration for multi-dimensional particle sizing techniques in fluid mechanics,” Experiments in fluids 32, 143–152 (2002). [CrossRef]
  4. D. Sugimoto, K. Zarogoulidis, T. Kawaguchi, K. Matsuura, Y. Hardalupas, A. Taylor, K. Hishida, “Extension of the compressed interferometric particle sizing technique for three component velocity measurements,” in “13th international symposium on applications of laser techniques to fluid mechanicsLisbon, Portugal,”, 26–29 (2006).
  5. F. Verpillat, F. Joud, P. Desbiolles, M. Gross, “Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Optics Express 19, 26044–26055 (2011). [CrossRef]
  6. L. Dixon, F. C. Cheong, D. G. Grier, “Holographic deconvolution microscopy for high-resolution particle tracking,” Optics Express 19, 16410–16417 (2011). [CrossRef] [PubMed]
  7. X. Zhang, I. Khimji, U. A. Gurkan, H. Safaee, P. N. Catalano, H. O. Keles, E. Kayaalp, U. Demirci, “Lensless imaging for simultaneous microfluidic sperm monitoring and sorting,” Lab on a Chip 11, 2535–2540 (2011). [CrossRef] [PubMed]
  8. L. Repetto, E. Piano, C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Optics letters 29, 1132–1134 (2004). [CrossRef] [PubMed]
  9. C. P. Allier, G. Hiernard, V. Poher, J. M. Dinten, “Bacteria detection with thin wetting film lensless imaging,” Biomedical optics express 1, 762–770 (2010). [CrossRef]
  10. J. R. Fienup, “Coherent lensless imaging,” in “Imaging Systems,” (2010). [CrossRef]
  11. T. C. Poon, T. Yatagai, W. Juptner, “Digital holography-coherent optics of the 21st century: introduction,” Applied Optics 45, 821 (2006). [CrossRef]
  12. J. Coupland, J. Lobera, “Special issue : Optical tomography and digital holography,” Measurement Science and Technology 19, 070101 (2008). [CrossRef]
  13. M. K. Kim, Y. Hayasaki, P. Picart, J. Rosen, “Digital holography and 3D imaging: introduction to feature issue,” Appied Optics 52, DH1 (2013). [CrossRef]
  14. J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, C. Ducottet, “Digital holography of particles: benefits of the ‘inverse problem’ approach,” Measurement Science and Technology 19, 074005 (2008). [CrossRef]
  15. C. Fournier, L. Denis, E. Thiebaut, T. Fournel, M. Seifi, “Inverse problem approaches for digital hologram reconstruction,” in “Proceedings of SPIE,”, 80430S (2011). [CrossRef]
  16. J. Sheng, E. Malkiel, J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Applied optics 45, 3893–3901 (2006). [CrossRef] [PubMed]
  17. J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A Shaw, W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New Journal of Physics 10, 125013 (2008). [CrossRef]
  18. D. Nguyen, D. Honnery, J. Soria, “Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV,” Experiments in Fluids1–11 (2010).
  19. S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Optics Express 15, 18275–18282 (2007). [CrossRef] [PubMed]
  20. F. C. Cheong, K. Xiao, D. J. Pine, D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7, 6816–6819 (2011). [CrossRef]
  21. D. Chareyron, J. L. Marie, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, L. Mees, “Testing an in-line digital holography “inverse method” for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New Journal of Physics 14, 043039 (2012). [CrossRef]
  22. J. Fung, K. E. Martin, R. W. Perry, D. M. Kaz, R. McGorty, V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Optics express 19, 8051–8065 (2011). [CrossRef] [PubMed]
  23. F. Soulez, L. Denis, C. Fournier, É. Thiébaut, C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” Journal of the Optical Society of America. A 24, 1164–1171 (2007).
  24. F. Soulez, L. Denis, E. Thiébaut, C. Fournier, C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” Journal of the Optical Society of America. A, Optics, Image Science, and Vision 24, 3708–3716 (2007). [CrossRef] [PubMed]
  25. H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouvelle Revue d’ Optique 5, 87–93 (1974). [CrossRef]
  26. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, D. Trede, “Inline hologram reconstruction with sparsity constraints,” Optics Letters 34, 3475–3477 (2009). [CrossRef] [PubMed]
  27. G. B. Parrent, B. J. Thompson, “On the fraunhofer (far field) diffraction patterns of opaque and transparent objects with coherent background,” Journal of Modern Optics 11, 183–193 (1964).
  28. M. Seifi, C. Fournier, L. Denis, D. Chareyron, J.-L. Marié, “Three-dimensional reconstruction of particle holograms: a fast and accurate multiscale approach,” Journal of the Optical Society of America A 29, 1808–1817 (2012). [CrossRef]
  29. M. Seifi, C. Fournier, L. Denis, “HoloRec3D”. http://labh-curien.univ-st-etienne.fr/wiki-reconstruction/index.php/Main_Page , [Online; accessed 12-April-2013].
  30. M. Seifi, C. Fournier, L. Denis, “HoloRec3D : A free Matlab toolbox for digital holography,” Hal:ujm (2012).
  31. L. Mees, N. Grosjean, D. Chareyron, J-L. Marie, M. Seifi, C. Fournier, “Evaporating Droplet Hologram Simulation for Digital In-line Holography set-up with Divergent Beam,” Journal of Optical Society of America A 30, 2021–2028 (2013). [CrossRef]
  32. M. Seifi, L. Denis, C. Fournier, “Fast and accurate 3D object recognition directly from digital holograms,” Journal of the Optical Society of America A 30, 2216–2224 (2013). [CrossRef]
  33. C. K. Law, T. Y. Xiong, C. Wang, “Alcohol droplet vaporization in humid air,” International Journal of heat and mass transfer 30, 1435–1443 (1987). [CrossRef]
  34. C. K. Law, “Recent advances in droplet vaporization and combustion,” Progress in energy and combustion science 8, 171–201 (1982). [CrossRef]
  35. W. H. Press, T. A. Saul, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge University Press, 1992), cambridge university press ed.
  36. C. S. Vikram, M. L. Billet, “Some salient features of in-line fraunhofer holography with divergent beams,” Optik 78, 80–83 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (735 KB)     
» Media 2: AVI (980 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited