OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27992–28000

Low mode-locking threshold induced by surface plasmon field enhancement of gold nanoparticles

Tao Jiang, Zhe Kang, Guanshi Qin, Jun Zhou, and Weiping Qin  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27992-28000 (2013)
http://dx.doi.org/10.1364/OE.21.027992


View Full Text Article

Enhanced HTML    Acrobat PDF (2980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a novel method to reduce the mode-locking threshold of erbium-doped fiber laser (EDFL) based on saturable absorber (SA). The SA was prepared by mixing gold nanoparticles (GNPs) and single-wall carbon nanotubes in sodium carboxymethylcellulose. The mode-locking threshold of EDFL was adjusted through simple changing the concentration of GNPs in the SA. The variation range of the threshold was as large as 21.5 mW. A lowest threshold of ~16 mW was obtained with the concentration of GNPs as 0.006 mmol/ml. The largest decreased ratio of the initial threshold was 47.5%. Surface plasmon field enhancement effect was speculated as the main reason for the reduced mode-locking threshold.

© 2013 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5560) Lasers and laser optics : Pumping
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 12, 2013
Revised Manuscript: September 25, 2013
Manuscript Accepted: October 22, 2013
Published: November 7, 2013

Citation
Tao Jiang, Zhe Kang, Guanshi Qin, Jun Zhou, and Weiping Qin, "Low mode-locking threshold induced by surface plasmon field enhancement of gold nanoparticles," Opt. Express 21, 27992-28000 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000). [CrossRef]
  2. M. E. Fermann and I. Hart, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron.15(1), 191–206 (2009). [CrossRef]
  3. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett.24(10), 646–648 (1999). [CrossRef] [PubMed]
  4. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999). [CrossRef]
  5. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett.26(11), 819–821 (2001). [CrossRef] [PubMed]
  6. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultrafast fiber laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004). [CrossRef]
  7. M. S. Kang, N. Y. Joly, and P. S. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett.38(4), 561–563 (2013). [CrossRef] [PubMed]
  8. S. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004). [CrossRef]
  9. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2(6), 341–350 (2008). [CrossRef]
  10. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express16(13), 9429–9435 (2008). [CrossRef] [PubMed]
  11. K. Jiang, S. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett.22(11), 754–756 (2010). [CrossRef]
  12. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38), 3874–3899 (2009). [CrossRef]
  13. K. N. Cheng, Y. H. Lin, S. Yamashita, and G. R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J.4(5), 1542–1552 (2012). [CrossRef]
  14. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express17(4), 2358–2363 (2009). [CrossRef] [PubMed]
  15. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol.26(11), 1472–1478 (2008). [CrossRef]
  16. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett.72(15), 1817–1819 (1998). [CrossRef]
  17. A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett.96(4), 043307 (2010). [CrossRef]
  18. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  19. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  20. C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc.12(2), 121–129 (2002). [CrossRef] [PubMed]
  21. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  22. N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011). [CrossRef] [PubMed]
  23. T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, “Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd3+-Yb3+-Tm3+ ions,” J. Coll. Int. Sci.377(1), 81–87 (2012). [CrossRef]
  24. S. Zhong, Y. Shen, H. Shen, and Y. Huang, “FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance,” PIERS Online6(2), 153–156 (2010). [CrossRef]
  25. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992). [CrossRef]
  26. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004). [CrossRef]
  27. H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt.46(12), 2229–2233 (2007). [CrossRef] [PubMed]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  29. A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express16(15), 11337–11343 (2008). [CrossRef] [PubMed]
  30. Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry12(9), 2542–2549 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited