OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28001–28009

Optimization of light delivery by a nanowire-based single cell optical endoscope

Mikhail Ladanov, Surya Cheemalapati, and Anna Pyayt  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28001-28009 (2013)
http://dx.doi.org/10.1364/OE.21.028001


View Full Text Article

Enhanced HTML    Acrobat PDF (2396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we present a new design and FDTD simulations of light delivery by a nanowire-based intracellular endoscope. Nanowires can be used for minimally invasive and very local light delivery inside cells. One of the main challenges is coupling of light into the nanowire. We propose a new plasmonic coupler interface between cleaved optical fiber and a nanowire, and optimize light coupling efficiency and contrast.

© 2013 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 30, 2013
Revised Manuscript: October 23, 2013
Manuscript Accepted: October 26, 2013
Published: November 7, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Mikhail Ladanov, Surya Cheemalapati, and Anna Pyayt, "Optimization of light delivery by a nanowire-based single cell optical endoscope," Opt. Express 21, 28001-28009 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Andersson and A. van den Berg, “Microtechnologies and nanotechnologies for single-cell analysis,” Curr. Opin. Biotechnol.15(1), 44–49 (2004). [CrossRef] [PubMed]
  2. J. E. Ferrell and E. M. Machleder, “The biochemical basis of an all-or-none cell fate switch in xenopus oocytes,” Science280(5365), 895–898 (1998). [CrossRef] [PubMed]
  3. J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-cell mRNA isolation and analysis,” Anal. Chem.78(9), 3084–3089 (2006). [CrossRef] [PubMed]
  4. W. J. Blake, M. KAErn, C. R. Cantor, and J. J. Collins, “Noise in eukaryotic gene expression,” Nature422(6932), 633–637 (2003). [CrossRef] [PubMed]
  5. M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression in a single cell,” Science297(5584), 1183–1186 (2002). [CrossRef] [PubMed]
  6. M. N. Teruel and T. Meyer, “Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module,” Science295(5561), 1910–1912 (2002). [CrossRef] [PubMed]
  7. S. Lindström and H. Andersson-Svahn, “Miniaturization of biological assays — Overview on microwell devices for single-cell analyses,” Biochimica et Biophysica Acta (BBA) - General Subjects1810(3), 308–316 (2011). [CrossRef]
  8. B. H. Villas, “Flow cytometry: an overview,” Cell Vis.5(1), 56–61 (1998). [PubMed]
  9. P. O. Krutzik and G. P. Nolan, “Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling,” Nat. Methods3(5), 361–368 (2006). [CrossRef] [PubMed]
  10. J. P. Nolan and L. A. Sklar, “The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions,” Nat. Biotechnol.16(1), 633–638 (1998). [CrossRef] [PubMed]
  11. M. Oheim, “High-throughput microscopy must re-invent the microscope rather than speed up its functions,” Br. J. Pharmacol.152(1), 1–4 (2007). [CrossRef] [PubMed]
  12. R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol.7(9), 690–696 (2006). [CrossRef] [PubMed]
  13. Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012). [CrossRef] [PubMed]
  14. R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011). [CrossRef] [PubMed]
  15. R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011). [CrossRef] [PubMed]
  16. X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A.104(20), 8218–8222 (2007). [CrossRef] [PubMed]
  17. K. Yum, S. Na, Y. Xiang, N. Wang, and M.-F. Yu, “Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells,” Nano Lett.9(5), 2193–2198 (2009). [CrossRef] [PubMed]
  18. R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010). [CrossRef] [PubMed]
  19. S. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, “Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness,” Biochem. Biophys. Res. Commun.332(3), 633–639 (2005). [CrossRef] [PubMed]
  20. G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013). [CrossRef] [PubMed]
  21. J. J. Niu, M. G. Schrlau, G. Friedman, and Y. Gogotsi, “Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy,” Small7(4), 540–545 (2011). [CrossRef] [PubMed]
  22. E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009). [CrossRef] [PubMed]
  23. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008). [CrossRef] [PubMed]
  24. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004). [CrossRef] [PubMed]
  25. D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005). [CrossRef] [PubMed]
  26. P. M. Kasili, J. M. Song, and T. Vo-Dinh, “optical sensor for the detection of caspase-9 activity in a single cell,” J. Am. Chem. Soc.126(9), 2799–2806 (2004). [CrossRef] [PubMed]
  27. W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science258(5083), 778–781 (1992). [CrossRef] [PubMed]
  28. T. Vo-Dinh, J.-P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000). [CrossRef] [PubMed]
  29. T. Vo-Dinh and P. Kasili, “Fiber-optic nanosensors for single-cell monitoring,” Anal. Bioanal. Chem.382(4), 918–925 (2005). [CrossRef] [PubMed]
  30. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005). [CrossRef] [PubMed]
  31. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007). [CrossRef] [PubMed]
  32. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  33. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002). [CrossRef] [PubMed]
  34. R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: Experiment and simulation,” Biophys. J.94(11), 4504–4514 (2008). [CrossRef] [PubMed]
  35. N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008). [CrossRef]
  36. J. R. Starkey, N. S. Makarov, M. Drobizhev, and A. Rebane, “Highly sensitive detection of cancer cells using femtosecond dual-wavelength near-IR two-photon imaging,” Biomed. Opt. Express3(7), 1534–1547 (2012). [CrossRef] [PubMed]
  37. A. Petrušis, J. H. Rector, K. Smith, S. Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibres,” J. Micromech. Microeng.19(4), 047001 (2009). [CrossRef]
  38. P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004). [CrossRef]
  39. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001). [CrossRef]
  40. M. Kirkham, X. Wang, Z. L. Wang, and R. L. Snyder, “Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process,” Nanotechnology18(36), 365304 (2007). [CrossRef]
  41. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003). [CrossRef] [PubMed]
  42. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005). [CrossRef] [PubMed]
  43. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003). [CrossRef]
  44. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  45. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B71(16), 165408 (2005). [CrossRef]
  46. M. G. Velasco, P. Cassidy, and H. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun.284(19), 4805–4809 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited