OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28010–28018

An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy

Xiaogang Zhang, Zhiming Tao, Chuanwen Zhu, Yelong Hong, Wei Zhuang, and Jingbiao Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28010-28018 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1097 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-optical locking technique without extra electrical feedback control system for a semiconductor laser has been used in stabilizing the laser frequency to a hyperfine crossover transition of 87Rb 52S1/2, F = 2 → 52P3/2, F′ = 2, 3 with 1 MHz level accuracy. The optical feedback signal is generated from the narrow-band Faraday anomalous dispersion optical filter (FADOF) with nonlinear saturation effect. The peak transmission of the narrow-band FADOF corresponding to 52S1/2, F = 2 → 52P3/2, F′ = 2, 3 crossover transition is 18.6 %. The bandwidth is as wide as 38.9 MHz as the laser frequency changes. After locking, the laser frequency fluctuation is reduced to 1.7 MHz. The all-optical laser locking technique can be improved to much higher accuracy with increased external cavity length. The laser we have realized can provide light exactly resonant with atomic transitions used for other atom-light interaction experiments.

© 2013 OSA

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(140.2020) Lasers and laser optics : Diode lasers
(230.2240) Optical devices : Faraday effect

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 5, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 29, 2013
Published: November 7, 2013

Xiaogang Zhang, Zhiming Tao, Chuanwen Zhu, Yelong Hong, Wei Zhuang, and Jingbiao Chen, "An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy," Opt. Express 21, 28010-28018 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ip, A. Lau, D. Barros, and J. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16, 753–791 (2008). [CrossRef] [PubMed]
  2. M. Ohtsu and S. Araki, “Using a 1.5 μm DFB InGaAsP laser in a passive ring cavity type fiber gyroscope,” Appl. Opt.26, 464–470 (1987). [CrossRef] [PubMed]
  3. D. Sesko, C. G. Fan, and C. E. Wieman, “Production of a cold atomic vapor using diode-laser cooling,” J. Opt. Soc. Am. B5, 1225–1227 (1988). [CrossRef]
  4. K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006). [CrossRef]
  5. J. J. McFerran and A. N. Luiten, “Fractional frequency instability in the 10−14 range with a thermal beam optical frequency reference,” J. Opt. Soc. Am. B27, 277–285 (2010). [CrossRef]
  6. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett.16, 910–912 (1991). [CrossRef] [PubMed]
  7. S. D. Saliba and R. E. Scholten, “Linewidths below 100 KHz with external cavity diode lasers,” Appl. Opt.48, 6961–6966 (2009). [CrossRef] [PubMed]
  8. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991). [CrossRef]
  9. B. MacAdam, A. Steinbach, and C. Wieman, “A narrowband tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys.60, 1098–1111 (1992). [CrossRef]
  10. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett.16, 867–869 (1991). [CrossRef] [PubMed]
  11. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett.11, 846–848 (1991). [CrossRef]
  12. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, and M. Duan, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995). [CrossRef]
  13. S. D. Harrell, C. Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: Theory and applications,” J. Opt. Soc. Am. B26, 659–670 (2010). [CrossRef]
  14. A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010). [CrossRef]
  15. Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, “A flat spectral Faraday filter for sodium lidar,” Opt. Lett.36, 1302–1304 (2011). [CrossRef] [PubMed]
  16. J. Wang, J. Tang, M. Duan, and J. Li, “Reserch on the mechanism and performances of anomalous dispersion atomic optical filter with off-axis incident beam,” Acta Electron. Sin.16, 18145–18151 (2008).
  17. S. Liu, Y. Zhang, H. Wu, and D. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun.284, 4180–4184 (2011). [CrossRef]
  18. K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun.96, 240–244 (1992). [CrossRef]
  19. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011). [CrossRef]
  20. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett.18, 1019–1021 (1993). [CrossRef] [PubMed]
  21. H. Chen, M. A. White, D. A. Krueger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett.21, 1093–1095 (1996). [CrossRef] [PubMed]
  22. B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992). [CrossRef]
  23. E. T. Dressler, A. E. Laux, and R. I. Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B13, 1849–1858 (1996). [CrossRef]
  24. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001). [CrossRef]
  25. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001). [CrossRef]
  26. Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993). [CrossRef]
  27. M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996). [CrossRef]
  28. Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011). [CrossRef] [PubMed]
  29. Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp”, Appl. Phys. Lett.101211102 (2012). [CrossRef]
  30. X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012). [CrossRef] [PubMed]
  31. J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett.37, 524–526 (2012). [CrossRef]
  32. B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991). [CrossRef] [PubMed]
  33. J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line-filters,” Opt. Lett.17, 1388–1390 (1992). [CrossRef]
  34. B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs-455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992). [CrossRef]
  35. X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994). [CrossRef]
  36. S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–C1184 (2012). [CrossRef]
  37. Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultra-narrow bandwidth approaching the natural linewidth,” Opt. Lett.37, 4059–4061 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited