OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28072–28082

Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28072-28082 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Design, fabrication, and characterization of an asymmetric metal-semiconductor-metal photodetector, based on internal photoemission effect and integrated into a silicon-on-insulator waveguide, are reported. For this photodetector, a responsivity of 4.5 mA/W has been measured at 1550 nm, making it suitable for power monitoring applications. Because the absorbing metal is deposited strictly around the vertical output facet of the waveguide, a very small contact area of about 3 µm2 is obtained and a transit-time-limited bandwidth of about 1 GHz is demonstrated. Taking advantage of this small area and electrode asymmetry, a significant reduction in the dark current (2.2 nA at −21 V) is achieved. Interestingly, applying reverse voltage, the photodetector is able to tune its cut-off wavelength, extending its range of application into the MID infrared regime.

© 2013 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon
(130.0130) Integrated optics : Integrated optics
(250.0250) Optoelectronics : Optoelectronics

ToC Category:

Original Manuscript: July 15, 2013
Revised Manuscript: October 8, 2013
Manuscript Accepted: October 9, 2013
Published: November 8, 2013

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, "Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current," Opt. Express 21, 28072-28082 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors:State of the Art and Perspectives,” Sensors (Basel)10(12), 10571–10600 (2010). [CrossRef] [PubMed]
  2. M. Casalino, “Near-Infrared All-Silicon Photodetectors,” Int. J. Opt. Appl.2, 1–16 (2012). [CrossRef]
  3. B. Aslan and R. Turan, “On the internal photoemission spectrum of PtSi/p-Si infrared detectors,” Infrared Phys. Technol.43(2), 85–90 (2002). [CrossRef]
  4. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008). [CrossRef]
  5. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett.20(16), 1396–1398 (2008). [CrossRef]
  6. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express20(27), 28594–28602 (2012). [CrossRef] [PubMed]
  7. P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology23(44), 444011 (2012). [CrossRef] [PubMed]
  8. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011). [CrossRef] [PubMed]
  9. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011). [CrossRef] [PubMed]
  10. A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron.19(3), 4600209 (2013). [CrossRef]
  11. S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012). [CrossRef]
  12. M. Y. Liu and S. Y. Chou, “Internal emission metal‐semiconductor‐metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2675 (1995). [CrossRef]
  13. S. Averine, O. Bondarenko, and R. Sachot, “High-speed limitations of the metal-semiconductor-metal photodiode structures with submicron gap between the interdigitated contacts,” Solid-State Electron.46(12), 2045–2051 (2002). [CrossRef]
  14. J. Shi, K. Gan, Y. Chiu, Y. Chen, and C. Sun, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Technol. Lett.13(6), 623–625 (2001). [CrossRef]
  15. W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69(23), 3578–3580 (1996). [CrossRef]
  16. A. K. Okyay, C. O. Chui, and K. C. Saraswat, “Leakage suppression by asymmetric area electrodes in metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.88(6), 063506 (2006). [CrossRef]
  17. M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010). [CrossRef]
  18. S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14(12), 1209–1218 (1971). [CrossRef]
  19. Physics of Semiconductor Devices, S. M. Sze, New York: John Wiley & Sons, (1981).
  20. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931). [CrossRef]
  21. VLSI Technology, S. M. Sze, New York: McGraw-Hill, (1988).
  22. S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage-length product,” Opt. Laser Technol.45, 204–208 (2013). [CrossRef]
  23. M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).
  24. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991). [CrossRef]
  25. S. Rao, C. D'Addio, and F. G. Della Corte, “All-optical modulation in a CMOS-compatible amorphous silicon-based device,” J. European Opt. Soc.7, 12023 (2012). [CrossRef]
  26. B. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, “IrSi Schottky-Barrier Infrared Detectors with 10 pm Cutoff Wavelength,” IEEE Electron Device Lett.9(12), 650–653 (1988). [CrossRef]
  27. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A.8(10), 840–848 (2006). [CrossRef]
  28. V. Raghunathan, R. Shori, O. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” J. Phys. Status Solidi203(5), R38–R40 (2006). [CrossRef]
  29. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a mid-infrared silicon Raman amplifier,” Opt. Express15(22), 14355–14362 (2007). [CrossRef] [PubMed]
  30. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599–12609 (2012). [CrossRef] [PubMed]
  31. M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm,” J. Opt. A, Pure Appl. Opt.8(10), 909–913 (2006). [CrossRef]
  32. C. Scales and P. Berini, “Thin-film Schottky barrier Photodetector Models,” IEEE J. Quantum Electron.46(5), 633–643 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited