OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28103–28110

Numerical analysis of transmission efficiency for parabolic optical fiber nano-probe

Wei Zhu, Tielin Shi, Zirong Tang, Bo Gong, Guanglan Liao, and Shiyuan Liu  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28103-28110 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Theoretical calculations are performed for the transmission efficiencies of parabolic nano-probes with different shapes, based on the finite element method. It shows that the transmittance will fluctuate dramatically with the variation of either wavelength or probe shape, and the efficiency could be rather high even at long wavelengths. Subsequently, we thoroughly investigate this phenomenon and find that these fluctuations are due to the joint effect of light propagating modes and surface plasmon polaritons modes. It indicates that high transmittance can be achieved with the selection of appropriate wavelength and probe structure.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.2310) Fiber optics and optical communications : Fiber optics
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(180.5810) Microscopy : Scanning microscopy

ToC Category:

Original Manuscript: August 14, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: November 1, 2013
Published: November 8, 2013

Wei Zhu, Tielin Shi, Zirong Tang, Bo Gong, Guanglan Liao, and Shiyuan Liu, "Numerical analysis of transmission efficiency for parabolic optical fiber nano-probe," Opt. Express 21, 28103-28110 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett.73(15), 2090–2092 (1998). [CrossRef]
  2. B. Vohnsen and S. I. Bozhevolnyi, “Characterization of near-field optical probes,” Appl. Opt.38(9), 1792–1797 (1999). [CrossRef] [PubMed]
  3. L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011). [CrossRef] [PubMed]
  4. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett.20(9), 970–972 (1995). [CrossRef] [PubMed]
  5. H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation,” J. Microsc.202(1), 50–52 (2001). [CrossRef] [PubMed]
  6. X. Wang, Z. Z. Fan, and T. T. Tang, “Study on the power transmission and light spot size of optical probes in scanning near-field optical microscopes,” Opt. Commun.235(1-3), 31–40 (2004). [CrossRef]
  7. I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Modeling tip performance for combined STM-luminescence and aperture-SNOM scanning probe: Spatial resolution and collection efficiency,” Appl. Surf. Sci.254(23), 7861–7863 (2008). [CrossRef]
  8. V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express18(8), 8722–8734 (2010). [CrossRef] [PubMed]
  9. M. Garcia-Parajo, T. Tate, and Y. Chen, “Gold-coated parabolic tapers for scanning near-field optical microscopy: fabrication and optimisation,” Ultramicroscopy61(1-4), 155–163 (1995). [CrossRef]
  10. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt.34(7), 1215–1228 (1995). [CrossRef] [PubMed]
  11. Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express14(25), 12510–12516 (2006). [CrossRef] [PubMed]
  12. W. Zhu, T. L. Shi, Z. R. Tang, B. Gong, G. L. Liao, and J. Tully, “Dynamic selective etching: a facile route to parabolic optical fiber nano-probe,” Opt. Express21(6), 6919–6927 (2013). [CrossRef] [PubMed]
  13. D. Y. Smith, E. Shiles, and M. Inokuti, “The Optical Properties of Metallic Aluminum” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  14. P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007). [CrossRef] [PubMed]
  15. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56(5), 703–718 (1977). [CrossRef]
  16. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am.51(5), 491–498 (1961). [CrossRef]
  17. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 4094–4106 (1994). [CrossRef] [PubMed]
  18. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000). [CrossRef]
  19. L. Novotny and D. W. Pohl, “Light propagation in scanning near-field optical microscopy” in Photons and Local Probes, O. Marti and R. Möller, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995).
  20. H. Raether, “Surface plasmon on smooth and rough surface and on gratings” in Surface Plasmons, G. Hohler, ed. (Springer, Berlin, 1988).
  21. P. B. Catrysse, H. Shin, and S. H. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Technol. B23(6), 2675–2678 (2005). [CrossRef]
  22. U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B64(12), 125420 (2001). [CrossRef]
  23. S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15(7), 4310–4320 (2007). [CrossRef] [PubMed]
  24. E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt.8(4), S94–S97 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited