OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28111–28133

Spatial resolution and noise in organic light-emitting diode displays for medical imaging applications

Asumi Yamazaki, Chih-Lei Wu, Wei-Chung Cheng, and Aldo Badano  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28111-28133 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1917 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the resolution and noise characteristics of handheld and workstation organic light-emitting diode (OLED) displays in comparison with liquid crystal displays (LCDs). The results demonstrate advantages, in terms of sharpness, of handheld OLED displays with modulation transfer function (MTF) values exceeding 0.60 at the Nyquist frequencies. The OLED workstation included in this study exhibits significant signal contamination among adjacent pixels resulting in degraded resolution performance indicated by horizontal and vertical MTF values of 0.13 and 0.24 at the Nyquist frequency. On the other hand, its noise characteristics are superior to the LCD workstation tested. While the noise power spectral (NPS) values of the OLED workstation are 8.0×10−6 mm2 at 1 mm−1, the LCD workstation has NPS values of 2.6×10−5 mm2. Although phone-size OLED displays have superior resolution and noise per pixel, the perceived resolution characteristics at appropriate viewing distances are inferior to tablet-size and workstation LCDs. In addition, our results show some degree of dependency of the resolution and noise on luminance level and viewing orientation. We also found a slightly degraded resolution and increased low-frequency noise at off-normal orientations in the handheld displays.

© 2013 OSA

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(120.2040) Instrumentation, measurement, and metrology : Displays
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Imaging Systems

Original Manuscript: August 20, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 25, 2013
Published: November 8, 2013

Asumi Yamazaki, Chih-Lei Wu, Wei-Chung Cheng, and Aldo Badano, "Spatial resolution and noise in organic light-emitting diode displays for medical imaging applications," Opt. Express 21, 28111-28133 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Kim, J. Kim, Y. Kim, H. Choi, J. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt.42, 4297–4934 (2008).
  2. J. H. Lee, Y. H. Ho, K. Y. Chen, H. Y. Lin, J. H. Fang, S. C. Hsu, J. R. Lin, and M. K. Wei, “Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays,” Opt. Express16, 2184–2190 (2008).
  3. M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, and A. G. Rinzler, “Low-voltage, low-power, organic light-emitting transistors for active matrix displays,” Science332, 570–573 (2011). [CrossRef] [PubMed]
  4. S. H. Cho, Y. W. Song, J. G. Lee, Y. C. Kim, J. H. Lee, J. Ha, J. S. Oh, S. Y. Oh, S. Y. Lee, K. H. Hwang, D. S. Zang, and Y. H. Lee, “Weak-microcavity organic light-emitting diodes with improved light out-coupling,” Opt. Express16, 12632–12639 (2008). [CrossRef] [PubMed]
  5. S. M. Chen, Y. B. Yuan, J. R. Lian, and X. Zhou, “High-efficiency and high-contrast phosphorescent top-emitting organic light-emitting devices with p-type si anodes,” Opt. Express22, 14644–14649 (2007). [CrossRef]
  6. J. H. Lee, X. Zhu, Y. H. Lin, W. K. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, and S. T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express13, 9431–9438 (2005). [CrossRef] [PubMed]
  7. K. Nishiyama, M. Sano, S. Jinguji, A. Harada, J. Yoshimura, and Y. Fujii, “An organic light-emitting diode display for use in neuroendoscopic surgery in ventricle,” Acta Neurochir.154, 1523–1525 (2012). [CrossRef]
  8. A. E. Flanders, R. H. Wiggins, and M. E. Gozum, “Handheld computers in radiology,” RadioGraphics23, 1035–1047 (2003). [CrossRef] [PubMed]
  9. R. J. Toomey, J. T. Ryan, M. F. McEntee, M. G. Evanoff, D. P. Chakraborty, D. J. M. J. P. McNulty, E. M. Thomas, and P. C. Brennan, “The diagnostic efficacy of hand-held devices for emergency radiological consultation,” AJR Am. J. Roentgenol.194, 469–474 (2010). [CrossRef] [PubMed]
  10. J. P. McNulty, J. T. Ryan, M. G. Evanoff, and L. A. Rainford, “Flexible image evaluation: iPad versus secondary-class monitors for review of MR spinal emergency cases, a comparative study,” Acad. Radiol.19, 1023–1028 (2012). [CrossRef] [PubMed]
  11. S. John, A. C. C. Poh, T. C. C. Lim, E. H. Y. Chan, and L. R. Chong, “The iPad tablet computer for mobile on-call radiology diagnosis? Auditing discrepancy in CT and MRI reporting,” J. Digital Imaging25, 628–634 (2012). [CrossRef]
  12. A. F. Choudhri, T. M. Carr, C. P. Ho, J. R. Stone, S. S. B. Gay, and D. L. Lambert, “Handheld device review of abdominal CT for evaluation of acute appendicitis,” J. Digital Imaging25, 492–496 (2012). [CrossRef]
  13. E. Samei, A. Badano, D. Chakraborty, K. Compton, C. Cornelius, K. Corrigan, M. J. Flynn, B. Hemminger, N. Hngiandreou, J. Johnson, D. M. Moxley-Stevens, W. Pavlicek, H. Roehrig, L. Rutz, J. Shepard, R. A. Uzenoff, J. Wang, and C. E. Willis, “Assesment of display performance for medical imaging systems: Executive summary of AAPM TG18 report,” Med. Phys.32, 1205–1225 (2005). [CrossRef] [PubMed]
  14. A. Badano, R. M. Gagne, and R. J. Jennings, “Noise in flat-panel displays with subpixel structure,” Med. Phys.31, 715–723 (2004). [CrossRef] [PubMed]
  15. J. R. S. Saunders and E. Samei, “Resolution and noise measurements of five CRT and LCD medical displays,” Med. Phys.33, 308–319 (2006). [CrossRef] [PubMed]
  16. K. Ichikawa, Y. Kodera, and H. Fujita, “MTF measurement method for medical displays by using a bar-pattern image,” J. Soc. Inf. Disp.14, 831–837 (2006). [CrossRef]
  17. K. Ichikawa, Y. Kodera, A. Nishimura, M. Hasegawa, and N. Kimura, “Analysis method of noise power spectrum for medical monochrome liquid crystal displays,” Radiol. Phys. Technol.1, 201–207 (2008). [CrossRef] [PubMed]
  18. F. Zafar, M. Choi, J. Wang, P. Liu, and A. Badano, “Visual methods for determining ambient illumination conditions when viewing medical images in mobile display devices,” J. Soc. Inf. Disp.20, 124–132 (2012). [CrossRef]
  19. D. H. Fifadara, A. Averbukh, D. S. Channin, and A. Badano, “Effect of viewing angle on luminance and contrast for a five-million-pixel monochrome display and a nine-million-pixel color liquid crystal display,” J. Digital Imaging17, 264–270 (2004). [CrossRef]
  20. S. Hatanaka, J. Morishita, T. Hiwasa, K. Dogomori, F. Toyofuku, M. Ohki, and Y. Higashida, “Comparison of vewing angle and observer performances in different types of liquid-crystal display monitors,” Radiol. Phys. Technol.2, 166–174 (2009). [CrossRef] [PubMed]
  21. A. Badano and D. H. Fifadara, “Goniometric and conoscopic measurements of angular display contrast for one-, three-, five-, and nine-million-pixel medical liquid crystal displays,” Med. Phys.31, 3452–3460 (2004). [CrossRef]
  22. E. Samei and S. L. Wright, “Vewing angle performance of medical liquid crystal displays,” Med. Phys.33, 645–654 (2006). [CrossRef] [PubMed]
  23. G. C. Kagadis, A. Walz-Flannigan, E. A. Krupinski, P. G. Nagy, K. Katsanos, A. Diamantopoulos, and S. G. Langer, “Medical imaging displays and their use in image interpretation,” RadioGraphics33, 275–291 (2013). [CrossRef] [PubMed]
  24. S. P. Prabhu, S. Gandhi, and P. R. Goddard, “Ergonomics of digital imaging,” Br. J. Radiol.78, 582–586 (2005). [CrossRef] [PubMed]
  25. J. T. Norweck, J. A. Seibert, K. P. Andriole, D. A. Clunie, B. H. Curran, M. J. Flynn, E. Krupinski, R. P. Lieto, D. J. Peck, and T. Mian, “ACR-AAPM-SIIM technical standard for electronic practice of medical imaging,” J. Digital Imaging26, 38–52 (2012). [CrossRef]
  26. A. Badano, M. J. Flynn, and J. Kanicki, High-Fidelity Medical Imaging Displays (SPIE Press, 2004).
  27. M. B. Williams, P. A. Mangiafico, and P. U. Simoni, “Noise power spectra of images from digital mammography detectors,” Med. Phys.26, 1279–1293 (1999). [CrossRef] [PubMed]
  28. E. Nishimaru, K. Ichikawa, I. Okita, Y. Tomoshige, T. Kurokawa, Y. Nakamura, and M. Suzuki, “Development of a noise reduction filter algorithm for pediatric body images in multidetector CT,” J. Digital Imaging23, 806–818 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited