OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28167–28174

Independent spatial intensity, phase and polarization distributions

Erik H. Waller and Georg von Freymann  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28167-28174 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2637 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Independent control of the spatial intensity, phase and polarization distribution has numerous applications in direct laser writing, microscopy and optical trapping. Especially, it is well known that the inversion of the Debye-Wolf diffraction integral usually leads to spatially varying intensity, phase and polarization maps. Here, we present a prism and grating free setup built around a single phase-only spatial-light-modulator for full control of spatial intensity, phase and polarization distributions. These distributions are not limited to non-diffractive beams and do not require any change of setup. We verify the versatility of the proposed method with wavefront and intensity measurements.

© 2013 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(070.6120) Fourier optics and signal processing : Spatial light modulators
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Diffraction and Gratings

Original Manuscript: September 4, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 27, 2013
Published: November 8, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Erik H. Waller and Georg von Freymann, "Independent spatial intensity, phase and polarization distributions," Opt. Express 21, 28167-28174 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200, 105–108 (2001). [CrossRef]
  2. E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express20, 24949–24956 (2012). [CrossRef] [PubMed]
  3. E. H. Waller and G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express21, 21708–21713 (2013). [CrossRef] [PubMed]
  4. T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012). [CrossRef]
  5. I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun.284, 2430–2436 (2011). [CrossRef]
  6. M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, “Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region,” Opt. Express16, 4901–4917 (2008). [CrossRef] [PubMed]
  7. K. Jahn and N. Bokor, “Solving the inverse problem of high numerical aperture focusing using vector Slepian harmonics and vector Slepian multipole fields,” Opt. Commun.288, 13–16 (2013). [CrossRef]
  8. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commerical twisted nematic LCDs,” Appl. Opt.47, 2076–2081 (2008). [CrossRef] [PubMed]
  9. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt.38, 5004–5013 (1999). [CrossRef]
  10. V. Bagnoud and J. D. Zuegel, “Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator,” Opt. Lett.29, 295–297 (2004). [CrossRef] [PubMed]
  11. X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32, 3549–3551 (2007). [CrossRef] [PubMed]
  12. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16, 15897–15901 (2008). [CrossRef] [PubMed]
  13. I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Jones matrix treatment for optical Fourier processors with structured polarization,” Opt. Express19, 4583–4594 (2011). [CrossRef] [PubMed]
  14. J. H. Clegg and M. A. A. Neil, “Double pass, common path method for arbitrary polarization control using a ferroelectric liquid crystal spatial light modulator,” Opt. Lett.38, 1043–1045 (2013). [CrossRef] [PubMed]
  15. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett.27, 1929–1931 (2002). [CrossRef]
  16. H. Chen, J. Hao, B.-F. Zhang, J. Xu, J. Ding, and H.-T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett.36, 3179–3182 (2011). [CrossRef] [PubMed]
  17. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20, 14015–14029 (2012). [CrossRef] [PubMed]
  18. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun.187, 325–336 (2001). [CrossRef]
  19. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquied crystal spatial light modulator,” Opt. Express20, 364–376 (2012). [CrossRef] [PubMed]
  20. D. Maluenda, I. Juvells, R. Martínez-Herrero, and A. Carnicer, “Reconfigurable beams with arbitrary polarization and shape distributions at a given plane,” Opt. Express21, 5424–5431 (2013). [CrossRef]
  21. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring arbitrary optical vector beams,” New J. Phys.9, 1–20 (2007).
  22. W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express21, 20692–20706 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited