OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28189–28197

Aberration compensation in aplanatic solid immersion lens microscopy

Yang Lu, Thomas Bifano, Selim Ünlü, and Bennett Goldberg  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28189-28197 (2013)
http://dx.doi.org/10.1364/OE.21.028189


View Full Text Article

Enhanced HTML    Acrobat PDF (1672 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The imaging quality of an aplanatic SIL microscope is shown to be significantly degraded by aberrations, especially when the samples have thicknesses that are more than a few micrometers thicker or thinner than the design thickness. Aberration due to the sample thickness error is modeled and compared with measurements obtained in a high numerical aperture (NA ~3.5) microscope. A technique to recover near-ideal imaging quality by compensating aberrations using a MEMS deformable mirror is described and demonstrated.

© 2013 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(110.1085) Imaging systems : Adaptive imaging

ToC Category:
Microscopy

History
Original Manuscript: October 1, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: October 31, 2013
Published: November 8, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Yang Lu, Thomas Bifano, Selim Ünlü, and Bennett Goldberg, "Aberration compensation in aplanatic solid immersion lens microscopy," Opt. Express 21, 28189-28197 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28189


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990). [CrossRef]
  2. L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998). [CrossRef]
  3. D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000). [CrossRef]
  4. K. Karrai, X. Lorenz, and L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett.77(21), 3459–3461 (2000). [CrossRef]
  5. J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of widefield solid immersion lens microscopy,” Appl. Opt.46(20), 4202–4208 (2007). [CrossRef] [PubMed]
  6. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001). [CrossRef]
  7. E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007). [CrossRef]
  8. E. Ramsay, N. Pleynet, D. Xiao, R. J. Warburton, and D. T. Reid, “Two-photon optical-beam-induced current solid-immersion imaging of a silicon flip chip with a resolution of 325 nm,” Opt. Lett.30(1), 26–28 (2005). [CrossRef] [PubMed]
  9. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys.97(5), 053105 (2005). [CrossRef]
  10. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express16(13), 9501–9506 (2008). [CrossRef] [PubMed]
  11. F. H. Köklü and M. S. Unlü, “Subsurface microscopy of interconnect layers of an integrated circuit,” Opt. Lett.35(2), 184–186 (2010). [CrossRef] [PubMed]
  12. P. Török, “Focusing of electromagnetic waves through a dielectric interface by lenses of finite Fresnel number,” J. Opt. Soc. Am. A15(12), 3009–3015 (1998). [CrossRef]
  13. M. Lang, E. Aspnes, and T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express16(24), 20008–20028 (2008). [CrossRef] [PubMed]
  14. S. H. Goh and C. J. R. Sheppard, “High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun.282(5), 1036–1041 (2009). [CrossRef]
  15. S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum.80(1), 013703 (2009). [CrossRef] [PubMed]
  16. R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. D. Chen, “Resolution of aplanatic solid immersion lens based microscopy,” J. Opt. Soc. Am. A29(6), 1059–1070 (2012). [CrossRef] [PubMed]
  17. R. Chen, K. Agarwal, Y. Zhong, C. J. R. Sheppard, J. C. H. Phang, and X. D. Chen, “Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens,” J. Opt. Soc. Am. A29(11), 2350–2359 (2012). [CrossRef] [PubMed]
  18. R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. D. Chen, “A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope,” Opt. Express21(12), 14316–14330 (2013). [CrossRef] [PubMed]
  19. T. X. Hoang, X. D. Chen, and C. J. R. Sheppard, “Rigorous analytical modeling of high-aperture focusing through a spherical interface,” J. Opt. Soc. Am. A30(7), 1426–1440 (2013). [CrossRef]
  20. P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010). [CrossRef] [PubMed]
  21. M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun.263(2), 147–151 (2006). [CrossRef]
  22. M. Shaw, S. Hall, S. Knox, R. Stevens, and C. Paterson, “Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy,” Opt. Express18(7), 6900–6913 (2010). [CrossRef] [PubMed]
  23. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett.32(14), 2007–2009 (2007). [CrossRef] [PubMed]
  24. M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci365(1861), 2829–2843 (2007). [CrossRef] [PubMed]
  25. Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012). [CrossRef]
  26. R. R. Shannon and J. C. Wyant, “Basic Wavefront Aberration Theory for Optical Metrology,” in Applied Optics and Optical Engineering, Vol. 11 (Academic, 1992), Chap. 1.
  27. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998). [CrossRef]
  28. M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photonics News23(1), 22–29 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited