OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28198–28218

Diffraction-unlimited optical imaging of unstained living cells in liquid by electron beam scanning of luminescent environmental cells

Hideki T. Miyazaki, Takeshi Kasaya, Taro Takemura, Nobutaka Hanagata, Takeshi Yasuda, and Hiroshi Miyazaki  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28198-28218 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3875 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An environmental cell with a 50-nm-thick cathodolumi-nescent window was attached to a scanning electron microscope, and diffraction-unlimited near-field optical imaging of unstained living human lung epithelial cells in liquid was demonstrated. Electrons with energies as low as 0.8 – 1.2 kV are sufficiently blocked by the window without damaging the specimens, and form a sub-wavelength-sized illumination light source. A super-resolved optical image of the specimen adhered to the opposite window surface was acquired by a photomultiplier tube placed below. The cells after the observation were proved to stay alive. The image was formed by enhanced dipole radiation or energy transfer, and features as small as 62 nm were resolved.

© 2013 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.5810) Microscopy : Scanning microscopy
(250.1500) Optoelectronics : Cathodoluminescence
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 5, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: October 28, 2013
Published: November 8, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Hideki T. Miyazaki, Takeshi Kasaya, Taro Takemura, Nobutaka Hanagata, Takeshi Yasuda, and Hiroshi Miyazaki, "Diffraction-unlimited optical imaging of unstained living cells in liquid by electron beam scanning of luminescent environmental cells," Opt. Express 21, 28198-28218 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Inoué and K. R. Spring, Video Microscopy, the Fundamentals, 2 (Plenum, 1997). [CrossRef]
  2. L. Reimer, Transmission Electron Microscopy, 4 (Springer, 1997). [CrossRef]
  3. L. Reimer, Scanning Electron Microscopy, 2 (Springer, 1998). [CrossRef]
  4. J. E. Mazurkiewicz and P. K. Nakane, “Light and electron microscopic localization of antigens in tissues embedded in polyethylene glycol with a peroxidase-labeled antibody method,” J. Histochem. Cytochem.20, 969–974 (1972). [CrossRef] [PubMed]
  5. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett.44, 651–653 (1984). [CrossRef]
  6. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope,” Ultramicroscopy13, 227–232 (1984). [CrossRef]
  7. T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,”Jpn. J. Appl. Phys.37, 1638–1642 (1998). [CrossRef]
  8. M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett.573, 6–10 (2004). [CrossRef] [PubMed]
  9. C. Höppener and L. Novotny, “Imaging of membrane proteins using antenna-based optical microscopy,” Nanotechnology19, 384012 (2008). [CrossRef] [PubMed]
  10. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun.183, 333–336 (2000). [CrossRef]
  11. R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface – combined TERS – investigations of lipids and human cells,” J. Raman Spectrosc.40, 1452–1457 (2009). [CrossRef]
  12. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A.97, 8206–8210 (2000). [CrossRef] [PubMed]
  13. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A.102, 13081–13086 (2005). [CrossRef] [PubMed]
  14. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent protains at nanometer resolution,” Science313, 1642–1645 (2006). [CrossRef] [PubMed]
  15. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–795 (2006). [CrossRef] [PubMed]
  16. S. W. Hell, “Far-field optical nanoscopy,” Science316, 1153–1158 (2007). [CrossRef] [PubMed]
  17. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics7, 113–117 (2013). [CrossRef]
  18. P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics7, 449–453 (2013). [CrossRef]
  19. R. Herbst and D. Hoder, “Cathodoluminescence in biological studies,” Scanning1, 35–41 (1978). [CrossRef]
  20. E. Kimura, T. Sekiguchi, H. Oikawa, J. Niitsuma, Y. Nakayama, H. Suzuki, M. Kimura, K. Fujii, and T. Ushiki, “Cathodoluminescence imaging for identifying uptaken fluorescence materials in Kupffer cells using scanning electron microscopy,” Arch. Histol. Cytol.67, 263–270 (2004). [CrossRef] [PubMed]
  21. J. Niitsuma, H. Oikawa, E. Kimura, T. Ushiki, and T. Sekiguchi, “Cathodoluminescence investigation of organic materials,” J. Electron Microsc.54, 325–330 (2005). [CrossRef]
  22. H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express4, 112402 (2011). [CrossRef]
  23. N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B64, 205419 (2001). [CrossRef]
  24. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys.3, 348–353 (2007). [CrossRef]
  25. B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature462, 902–906 (2009). [CrossRef] [PubMed]
  26. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett.5, 1123–1127 (2005). [CrossRef] [PubMed]
  27. D. F. Parsons, V. R. Matricardi, R. C. Moretz, and J. N. Turner, “Electron microscopy and diffraction of wet unstained and unfixed biological objects,” Adv. Biol. Med. Phys.15, 161–270 (1974). [PubMed]
  28. K.-L. Liu, C.-C. Wu, Y.-J. Huang, H.-L. Peng, W.-Y. Chang, P. Chang, L. Hsu, and T.-R. Yew, “Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions,” Lab Chip8, 1915–1921 (2008). [CrossRef] [PubMed]
  29. N. de Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, “Electron microscopy of whole cells in liquid with nanometer resolution,” Proc. Natl. Acad. Sci. U. S. A.106, 2159–2164 (2009). [CrossRef] [PubMed]
  30. S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U. S. A.101, 3346–3351 (2004). [CrossRef] [PubMed]
  31. N. de Jonge and F. M. Ross, “Electron miocroscopy of specimens in liquid,” Nat. Nanotechnol.6, 695–704 (2011). [CrossRef] [PubMed]
  32. H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.169, 438–449 (2010). [CrossRef] [PubMed]
  33. V. E. Cosslett, “Radiation damage in the high resolution electron microscopy of biological materials: a review,” J. Microsc.113, 113–129 (1978). [CrossRef] [PubMed]
  34. D. B. Peckys, P. Mazur, K. L. Gould, and N. de Jonge, “Fully hydrated yeast cells imaged with electron microscopy,” Biophys. J.100, 2522–2529 (2011). [CrossRef] [PubMed]
  35. W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express18, 12897–12902 (2010). [CrossRef] [PubMed]
  36. Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express20, 5629–5635 (2012). [CrossRef] [PubMed]
  37. T. Ogura, “Measurement of the unstained biological sample by a novel scanning electron generation X-ray microscope based on SEM,” Biochem. Biophys. Res. Commun.385, 624–629 (2009). [CrossRef] [PubMed]
  38. J. Kido, H. Shionoya, and K. Nagai, “Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole),” Appl. Phys. Lett.67, 2281–2283 (1995). [CrossRef]
  39. R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys.105, 053711 (2009). [CrossRef]
  40. K. Kanaya and S. Okayama, “Penetration and energy-loss theory of electrons in solid targets,” J. Phys. D Appl. Phys.5, 43–58 (1972). [CrossRef]
  41. D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007). [CrossRef] [PubMed]
  42. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B76, 115123 (2007). [CrossRef]
  43. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature374, 555–559 (1995). [CrossRef] [PubMed]
  44. K. Nakaoka, J. Ueyama, and K. Ogura, “Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates,” J. Electrochem. Soc.151, C661–C665 (2004). [CrossRef]
  45. M. Xu, D. Fujita, S. Kajiwara, T. Minowa, X. Li, T. Takemura, H. Iwai, and N. Hanagata, “Contribution of physicochemical characteristics of nano-oxides to cytotoxicity,” Biomaterials31, 8022–8031 (2010). [CrossRef] [PubMed]
  46. N. Hanagata, F. Zhuang, S. Connolly, J. Li, N. Ogawa, and M. Xu, “Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis,”ACS Nano5, 9326–9338 (2011). [CrossRef] [PubMed]
  47. T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,”Nat. Photonics4, 767–771 (2010). [CrossRef]
  48. A. Chiba, S. Tanaka, W. Inami, A. Sugita, K. Takada, and Y. Kawata, “Amorphous silicon nitride thin films implanted with cerium ions for cathodoluminescent light source,” Opt. Mater.35, 1887–1889 (2013). [CrossRef]
  49. A. Stoffel, A. Kovács, W. Kronast, and B. Müller, “LPCVD against PECVD for micromechanical applications,” J. Micromech. Microeng.6, 1–13 (1996). [CrossRef]
  50. J. Han, J. An, R. N. Jana, K. Jung, J. Do, S. Pyo, and C. Im, “Charge carrier photogeneration and hole transport properties of blends of a π-conjugated polymer and an organic-inorganic hybrid material,” Macromol. Res.17, 894–900 (2009). [CrossRef]
  51. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt.12, 555–563 (1973). [CrossRef] [PubMed]
  52. M. Bass, Handbook of Optics II, 2 (McGraw-Hill, 1995).
  53. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  54. K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys.87, 7820–7824 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited