OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28219–28231

Electroluminescence from metal-insulator-semiconductor tunneling diodes using compressively strained Ge on Si0.5Ge0.5 virtual substrates

Santanu Manna, Rakesh Aluguri, Samaresh Das, Rajkumar Singha, and Samit K. Ray  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28219-28231 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3937 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Direct band gap optical transition in compressively strained Ge film is demonstrated for the first time under current injection through a metal-insulator-semiconductor diode structure. The compressively strained Ge layer is grown on the relaxed Si0.5Ge0.5 substrate by solid source molecular beam epitaxy. The electroluminescence of direct band gap emission from strained Ge film and TO phonon assisted transition in Si and SiGe from the virtual substrate is observed under different current injections. The signature of heavy hole and light hole splitting in valence band is observed in the electroluminescence spectra from strained Ge layer. The temperature dependent electroluminescence characteristics have been studied over a temperature range of 10–300 K. AC frequency modulation for the Ge direct band electroluminescence has been studied to improve the emission efficiency over the DC bias.

© 2013 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.0250) Optical devices : Optoelectronics

ToC Category:
Optical Devices

Original Manuscript: August 14, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: September 26, 2013
Published: November 8, 2013

Santanu Manna, Rakesh Aluguri, Samaresh Das, Rajkumar Singha, and Samit K. Ray, "Electroluminescence from metal-insulator-semiconductor tunneling diodes using compressively strained Ge on Si0.5Ge0.5 virtual substrates," Opt. Express 21, 28219-28231 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. David, Lockwood and Lorenzo Pavesi, Silicon Photonics II, Components and Integration (Springer-Verlag Berlin Heidelberg, 2011).
  2. N. C. Cáit, Strained SiGe-channel p-MOSFETs: impact of heterostructure design and process technology, Massachusetts Institute of Technology Theses (2007)
  3. C. K. Maiti, N. B. Chakrabarti, and S. K. Ray, Strained Silicon Heterostructures: materials and devices (The Institution of Electrical Engineers, 2001)
  4. F. Schaffler, “High-mobility Si and Ge structures,” Semicond. Sci. Technol.12(12), 1515–1549 (1997). [CrossRef]
  5. M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge channels for high-mobility metal-oxidesemiconductor field-effect transistors,” J. Appl. Phys.97(1), 011101 (2005). [CrossRef]
  6. K. Sawano, A. Fukumoto, Y. Hoshi, K. Nakagawa, and Y. Shiraki, “Strained-Si nMOSFET formed on very thin SiGe buffer layer fabricated by ion implantation technique,” Thin Solid Films517(1), 353–355 (2008). [CrossRef]
  7. J. Engvall, J. Olajos, H. G. Grimmeiss, H. Presting, H. Kibbel, and E. Kasper, “Electroluminescence at room temperature of a SinGem, strained-layer superllattice,” Appl. Phys. Lett.63(4), 491 (1993). [CrossRef]
  8. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett.34(8), 1198–1200 (2009). [CrossRef] [PubMed]
  9. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express17(12), 10019–10024 (2009). [CrossRef] [PubMed]
  10. S. K. Ray, S. Maikap, W. Banerjee, and S. Das, “Nanocrystals for silicon-based light-emitting and memory devices,” J. Phys. D Appl. Phys.46(15), 153001 (2013). [CrossRef]
  11. J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films520(8), 3354–3360 (2012). [CrossRef]
  12. E. Finkman, N. Shuall, A. Vardi, V. L. Thanh, and S. E. Schacham, “Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent,” J. Appl. Phys.103(9), 093114 (2008). [CrossRef]
  13. A. I. Yakimov, A. I. Nikiforov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, and A. V. Dvurechenskii, “Midinfrared photoresponse of Ge quantum dots on a strained Si0.65Ge0.35 layer,” Semicond. Sci. Technol.26(8), 085018 (2011). [CrossRef]
  14. T.-H. Cheng, C.-Y. Ko, C.-Y. Chen, K.-L. Peng, G.-L. Luo, C. W. Liu, and H.-H. Tseng, “Competitiveness between direct and indirect radiative transitions of Ge,” Appl. Phys. Lett.96(9), 091105 (2010). [CrossRef]
  15. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett.95(1), 011911 (2009). [CrossRef]
  16. M. de Kersauson, R. Jakomin, M. El Kurdi, G. Beaudoin, N. Zerounian, F. Aniel, S. Sauvage, I. Sagnes, and P. Boucaud, “Direct and indirect band gap room temperature electroluminescence of Ge diodes,” J. Appl. Phys.108(2), 023105 (2010). [CrossRef]
  17. J. Schulze, M. Oehme, and J. Werner, “Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices,” Thin Solid Films520(8), 3259–3261 (2012). [CrossRef]
  18. J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012). [CrossRef]
  19. J. R. Sánchez-Pérez, C. Boztug, F. Chen, F. F. Sudradjat, D. M. Paskiewicz, R. B. Jacobson, M. G. Lagally, and R. Paiella, “Direct-bandgap light-emitting germanium in tensilely strained nanomembranes,” Proc. Natl. Acad. Sci. U.S.A.108(47), 18893–18898 (2011). [CrossRef] [PubMed]
  20. D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett.100(13), 131112 (2012). [CrossRef]
  21. Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett.98(1), 011111 (2011). [CrossRef]
  22. C. W. Liu, M. H. Lee, M.-J. Chen, and C.-F. Lin, “Room-temperature electroluminescence from electron-hole plasmas in the metal–oxide–silicon tunneling diodes,” Appl. Phys. Lett.76(12), 1516 (2000).
  23. M. H. Liao, T.-H. Cheng, and C. W. Liu, “Infrared emission from Ge metal-insulator-semiconductor tunneling diodes,” Appl. Phys. Lett.89(26), 261913 (2006). [CrossRef]
  24. R. Aluguri, Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur-721302, S. Manna and S. K. Ray are preparing a manuscript to be called “Direct band gap optical emission from compressively strained Ge films grown on relaxed Si0.5Ge0.5 substrate,”
  25. R. K. Singha, S. Manna, S. Das, A. Dhar, and S. K. Ray, “Room temperature infrared photoresponse of self assembled Ge/Si (001) quantum dots grown by molecular beam epitaxy,” Appl. Phys. Lett.96(23), 233113 (2010). [CrossRef]
  26. M. Bonfanti, E. Grilli, M. Guzzi, M. Virgilio, G. Grosso, D. Chrastina, G. Isella, H. V. Känel, and A. Neels, “Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers,” Phys. Rev. B78(4), 041407 (2008). [CrossRef]
  27. A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys.111(1), 013501 (2012). [CrossRef]
  28. T. Arguirov, M. Kittler, M. Oehme, N. V. Abrosimov, E. Kasper, and J. Schulze, “Room temperature direct band-gap emission from an unstrained Ge p-i-n LED on Si,” Solid State Phenomena178–179, 25–30 (2011). [CrossRef]
  29. T. P. Sidiki, Structural and Optical Characterisation of Si/Si1-xGex Multiple Quantum Wells, PhD Thesis, Bergische Universität -GH- Wuppertal (2001)
  30. J. T. Teherani, W. Chern, D. A. Antoniadis, and J. L. Hoyt, “Extraction of large valence-band energy offsets and comparison to theoretical values for strained-Si/strained-Ge type-II heterostructures on relaxed SiGe substrates,” Phys. Rev. B85(205308), 356 (2012).
  31. M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates,” Phys. Rev. B Condens. Matter48(19), 14276–14287 (1993). [CrossRef] [PubMed]
  32. A. Marconi, Silicon Nanocrystal Based Light Emitting Devices for Silicon Photonics, PhD thesis, University of Trento, Dept. of Physics (2011)
  33. S. Das, S. Manna, R. K. Singha, R. Aluguri, and S. K. Ray, “Effect of growth temperature and post-growth annealing on luminescence properties of molecular beam epitaxy grown single layer Ge quantum dots,” J. Appl. Phys.113(6), 063101 (2013). [CrossRef]
  34. S. Das, S. Manna, R. K. Singha, A. Anopchenko, N. Daldosso, L. Pavesi, A. Dhar, and S. K. Ray, “Light emission and floating gate memory characteristics of germanium nanocrystals,” Phys. Status Solidi., A Appl. Mater. Sci.208(3), 635–638 (2011). [CrossRef]
  35. S. Das, R. K. Singha, A. Dhar, S. K. Ray, A. Anopchenko, N. Daldosso, and L. Pavesi, “Electroluminescence and charge storage characteristics of quantum confined germanium nanocrystals,” J. Appl. Phys.110(2), 024310 (2011). [CrossRef]
  36. Y. Ishikawa, J. Osaka, and K. Wada, “Germanium photodetectors in silicon photonics,” IEEE LEOS Annual Meeting - PHO, pp. 367–368 (2009) [CrossRef]
  37. Y. Yamane, K. Fujiwara, and J. K. Sheu, “Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode,” Appl. Phys. Lett.91(7), 073501 (2007). [CrossRef]
  38. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34(1), 149–154 (1967). [CrossRef]
  39. P. Lautenschlager, P. B. Allen, and M. Cardona, “Temperature dependence of band gaps in Si and Ge,” Phys. Rev. B Condens. Matter31(4), 2163–2171 (1985). [CrossRef] [PubMed]
  40. D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007). [CrossRef] [PubMed]
  41. S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett.6(1), 416 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited