OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28233–28245

Statistics of the disorder-induced losses of high-Q photonic crystal cavities

Momchil Minkov, Ulagalandha Perumal Dharanipathy, Romuald Houdré, and Vincenzo Savona  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28233-28245 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze and compare the effect of fabrication disorder on the quality factor of six well-known high-index photonic crystal cavity designs. The theoretical quality factors for the different nominal structures span more than three orders of magnitude, ranging from 5.4 × 104 to 7.5 × 107, and the defect responsible for confining light is introduced in a different way for each structure. Nevertheless, among the different designs we observe similar behavior of the statistics of the disorder-induced light losses. In particular, we show that for high enough disorder, such that the quality factor is mainly determined by the disorder-induced losses, the measured quality factors differ marginally – not only on average as commonly acknowledged, but also in their full statistical distributions. This notably shows that optimizing the theoretical quality factor brings little practical improvement if its value is already much larger than what is typically measured, and if this is the case, there is no way to choose an alternative design more robust to disorder.

© 2013 Optical Society of America

OCIS Codes
(140.3948) Lasers and laser optics : Microcavity devices
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: July 9, 2013
Revised Manuscript: October 9, 2013
Manuscript Accepted: October 31, 2013
Published: November 11, 2013

Momchil Minkov, Ulagalandha Perumal Dharanipathy, Romuald Houdré, and Vincenzo Savona, "Statistics of the disorder-induced losses of high-Q photonic crystal cavities," Opt. Express 21, 28233-28245 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  2. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007). [CrossRef]
  3. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73, 096501 (2010). [CrossRef]
  4. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009). [CrossRef]
  5. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,”Nature425, 944–947 (2003). [CrossRef]
  6. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005). [CrossRef]
  7. D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express13, 5961–5975 (2005). [CrossRef] [PubMed]
  8. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006). [CrossRef]
  9. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007). [CrossRef]
  10. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ∼ 109,” J. Lightwave Technol.26, 1532–1539 (2008). [CrossRef]
  11. M. Felici, K. A. Atlasov, A. Surrente, and E. Kapon, “Semianalytical approach to the design of photonic crystal cavities,” Phys. Rev. B82, 115118 (2010). [CrossRef]
  12. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express18, 8144–8150 (2010). [CrossRef] [PubMed]
  13. G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006). [CrossRef]
  14. H. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer, 2008). [CrossRef]
  15. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,”Nature432, 200–203 (2004). [CrossRef]
  16. C. Husko, A. D. Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94, 021111 (2009). [CrossRef]
  17. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010). [CrossRef]
  18. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics6, 605–609 (2012). [CrossRef]
  19. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012). [CrossRef]
  20. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6, 56–61 (2012). [CrossRef]
  21. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average q factor of three million,” Opt. Express19, 11916–11921 (2011). [CrossRef] [PubMed]
  22. S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84, 045423 (2011). [CrossRef]
  23. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett.82, 1661–1663 (2003). [CrossRef]
  24. U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of gaas photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21, 065202 (2010). [CrossRef] [PubMed]
  25. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors ( 1 million) of photonic crystal nanocavities,” Opt. Express14, 1996–2002 (2006). [CrossRef] [PubMed]
  26. D. Gerace and L. C. Andreani, “Effects of disorder on propagation losses and cavity q-factors in photonic crystal slabs,”Photonics Nanostruct. Fundam. Appl.3, 120–128 (2005). [CrossRef]
  27. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B79, 085112 (2009). [CrossRef]
  28. Z. Zhang and M. Qiu, “Small-volume waveguide-section high q microcavities in 2d photonic crystal slabs,” Opt. Express12, 3988–3995 (2004). [CrossRef] [PubMed]
  29. H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “High q h1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express20, 28292–28300 (2012). [CrossRef] [PubMed]
  30. V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B83, 085301 (2011). [CrossRef]
  31. M. Minkov and V. Savona, “Effect of hole-shape irregularities on photonic crystal waveguides,” Opt. Lett.37, 3108–3110 (2012). [CrossRef] [PubMed]
  32. N. L. Thomas, Z. Diao, H. Zhang, and R. Houdre, “Statistical analysis of subnanometer residual disorder in photonic crystal waveguides: Correlation between slow light properties and structural properties,” J. Vac. Sci. Technol. B29, 051601 (2011). [CrossRef]
  33. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guied-mode expansion method,” Phys. Rev. B73, 235114 (2006). [CrossRef]
  34. K. Welna, S. Portalupi, M. Galli, L. O’Faolain, and T. Krauss, “Novel dispersion-adapted photonic crystal cavity with improved disorder stability,” IEEE J. Quantum Electron.48, 1177–1183 (2012). [CrossRef]
  35. T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-q si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14, 377–386 (2006). [CrossRef] [PubMed]
  36. K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006). [CrossRef]
  37. D. Dorfner, T. Zabel, T. Hrlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24, 3688–3692 (2009). [CrossRef] [PubMed]
  38. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett.35, 2523–2525 (2010). [CrossRef] [PubMed]
  39. S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett.96, 141114 (2010). [CrossRef]
  40. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett.110, 123601 (2013). [CrossRef]
  41. M. Minkov and V. Savona, “Radiative coupling of quantum dots in photonic crystal structures,” Phys. Rev. B87, 125306 (2013). [CrossRef]
  42. V. Savona, “Erratum: Electromagnetic modes of a disordered photonic crystal [phys. rev. b 83, 085301 (2011)],” Phys. Rev. B86, 079907 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited