OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28272–28289

Removal of scratches on fused silica optics by using a CO2 laser

P. Cormont, P. Combis, L. Gallais, C. Hecquet, L. Lamaignère, and J. L. Rullier  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28272-28289 (2013)
http://dx.doi.org/10.1364/OE.21.028272


View Full Text Article

Enhanced HTML    Acrobat PDF (3830 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the efficiency of local CO2 laser processing of scratches on silica optics in order to enhance the nanosecond UV-laser damage resistance. The surface deformations induced by the process have been measured for different CO2 laser parameters and then the pulse duration and the beam diameter have been chosen accordingly to limit those deformations below 1 µm. From the study of the laser damage resistance as a function of different material modifications we identify a range of optimal radiation parameters allowing a complete elimination of scratches associated with a high threshold of laser damage. Calculation of the temperature of silica using a two-dimensional axi-symmetric code was compared with experiment, supporting an optimization of the laser parameter as a function of the maximal dimensions of scratches that could be removed by this process.

© 2013 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.6030) Materials : Silica
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: August 6, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 10, 2013
Published: November 11, 2013

Citation
P. Cormont, P. Combis, L. Gallais, C. Hecquet, L. Lamaignère, and J. L. Rullier, "Removal of scratches on fused silica optics by using a CO2 laser," Opt. Express 21, 28272-28289 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28272


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. I. Moses, “Advances in inertial confinement fusion at the National Ignition Facility (NIF),” Fusion Eng. Des.85(7-9), 983–986 (2010). [CrossRef]
  2. J. Ebrardt and J. M. Chaput, “LMJ on its way to fusion,” Sixth international conference on inertial fusion sciences and applications, Parts 1–4 244, 032017 (2010). [CrossRef]
  3. C. J. Stolz, “The national ignition facility: The world's largest optical system,” Proc. SPIE6834, 683402 (2007). [CrossRef]
  4. J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt.49(30), 5736–5745 (2010). [CrossRef] [PubMed]
  5. E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006). [CrossRef]
  6. A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008). [CrossRef]
  7. J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010). [CrossRef]
  8. Y. N. Prasad, T.-Y. Kwon, I.-K. Kim, I.-G. Kim, and J.-G. Park, “Generation of pad debris during oxide CMP process and its role in scratch formation,” J. Electrochem. Soc.158(4), H394–H400 (2011). [CrossRef]
  9. A. Salleo, F. Y. Genin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE3244, 341–347 (1998). [CrossRef]
  10. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt.21(18), 3249–3255 (1982). [CrossRef] [PubMed]
  11. G. A. J. Markillie, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components,” Appl. Opt.41(27), 5660–5667 (2002). [CrossRef] [PubMed]
  12. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, and L. Castañeda-Escobar, “Rod and spherical silica microlenses fabricated by CO2 laser melting,” Appl. Opt.44(21), 4547–4556 (2005). [CrossRef] [PubMed]
  13. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt.45(1), 162–171 (2006). [CrossRef] [PubMed]
  14. K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt.49(11), 1997–2005 (2010). [CrossRef] [PubMed]
  15. S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009). [CrossRef]
  16. P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express18(25), 26068–26076 (2010). [CrossRef] [PubMed]
  17. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010). [CrossRef]
  18. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010). [CrossRef]
  19. W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011). [CrossRef]
  20. P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012). [CrossRef]
  21. H. Bercegol, R. Courchinoux, M. Josse, and J. L. Rullier, “Observation of laser-induced damage on fused silica initiated by scratches,” Proc. SPIE5647, 78–85 (2005). [CrossRef]
  22. M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005). [CrossRef]
  23. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17(14), 11469–11479 (2009). [CrossRef] [PubMed]
  24. T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008). [CrossRef]
  25. L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012). [CrossRef]
  26. M. D. Feit and A. M. Rubenchick, “Mechanisms Of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE4932, 91–102 (2003). [CrossRef]
  27. M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010). [CrossRef]
  28. T. R. Anthony and H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys.48(9), 3888–3894 (1977). [CrossRef]
  29. M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005). [CrossRef]
  30. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE6720, 67200A (2007). [CrossRef]
  31. L. Lamaignère, G. Dupuy, T. Donval, P. Grua, and H. Bercegol, “Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness,” Appl. Opt.50(4), 441–446 (2011). [CrossRef] [PubMed]
  32. ISO Standard No 21254-1 (2011); ISO Standard No 21254-2 (2011); ISO Standard No 21254-3 (2011); ISO Standard No 21254-4 (2011).
  33. L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express17(26), 23488–23501 (2009). [CrossRef] [PubMed]
  34. R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013). [CrossRef]
  35. Corning, “HPFS(R° Fused silica Standard Grade,” www.corning.com/assets/0/965/989/1081/4A3CF573-9901-4848-9E8F-C3BA500EA7B5.pdf
  36. D. Hebert, P. Combis, L. Gallais, C. Hecquet, and J.-L. Rullier, “Comparison between fused silica of type II and III after heating at high temperature with a CO2 laser,” J. Am. Ceram. Soc. (submitted to).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited