OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28359–28379

Hilbert-Huang processing for single-exposure two-dimensional grating interferometry

Maciej Trusiak, Krzysztof Patorski, and Krzysztof Pokorski  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28359-28379 (2013)
http://dx.doi.org/10.1364/OE.21.028359


View Full Text Article

Enhanced HTML    Acrobat PDF (3522 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-shot crossed-type fringe pattern processing and analysis method called Hilbert-Huang grating interferometry (HHGI) is proposed. It consist of three main procedures: (1) crossed pattern is resolved into two fringe families using novel orthogonal empirical mode decomposition approach, (2) separated fringe sets are filtered using modified automatic selective reconstruction aided by enhanced fast empirical mode decomposition and mutual information detrending, and (3) Hilbert spiral transform is employed for fringe phase demodulation. Numerical and experimental studies corroborate the validity, versatility and robustness of the proposed HHGI technique. It can be successfully applied to multiplicative and additive type crossed patterns with sinusoidal and binary orthogonal component structures. Efficient adaptive filtering enables successful fast processing and analysis of complex and defected patterns.

© 2013 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 18, 2013
Revised Manuscript: October 25, 2013
Manuscript Accepted: October 27, 2013
Published: November 11, 2013

Citation
Maciej Trusiak, Krzysztof Patorski, and Krzysztof Pokorski, "Hilbert-Huang processing for single-exposure two-dimensional grating interferometry," Opt. Express 21, 28359-28379 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Robinson and G. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement (Institute of Physics Publishing, 1993).
  2. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).
  3. D. Malacara, ed., Optical Shop Testing (John Wiley, 2007).
  4. D. Post, B. Han, and P. Ifju, High Sensitivity Moirè (Springer, 1994).
  5. K. Patorski, Handbook of the Moirè Fringe Technique (Elsevier, 1993).
  6. S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt.10(7), 1575–1580 (1971). [CrossRef] [PubMed]
  7. S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter. Part 2,” Appl. Opt.10(7), 1690–1693 (1971). [CrossRef] [PubMed]
  8. A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun.2(9), 413–415 (1971). [CrossRef]
  9. A. W. Lohmann and D. E. Silva, “A Talbot interferometer with circular gratings,” Opt. Commun.4(5), 326–328 (1972). [CrossRef]
  10. D. E. Silva, “Talbot interferometer for radial and lateral derivatives,” Appl. Opt.11(11), 2613–2624 (1972). [CrossRef] [PubMed]
  11. O. Kafri, “Noncoherent method for mapping phase objects,” Opt. Lett.5(12), 555–557 (1980). [CrossRef] [PubMed]
  12. K. Patorski, “Diffraction effects in moiré deflectometry: comment,” J. Opt. Soc. Am. A3(5), 667–668 (1986). [CrossRef]
  13. E. Keren and O. Kafri, “Diffraction effects in moiré deflectometry: reply to comment,” J. Opt. Soc. Am. A3(5), 669–670 (1986). [CrossRef]
  14. E. Bar-Ziv, S. Sgulim, O. Kafri, and E. Keren, “Temperature mapping in flames by moire deflectometry,” Appl. Opt.22(5), 698–705 (1983). [CrossRef] [PubMed]
  15. G. Oster, M. Wasserman, and C. Zwerling, “Theoretical interpretation of moiré patterns,” J. Opt. Soc. Am.54(2), 169–175 (1964). [CrossRef]
  16. K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf ed., vol. 27, 1–108 (Elsevier, 1989).
  17. H. Canabal, J. A. Quiroga, and E. Bernabeu, “Improved phase-shifting method for automatic processing of moiré deflectograms,” Appl. Opt.37(26), 6227–6233 (1998). [CrossRef] [PubMed]
  18. J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moiré deflectograms,” Opt. Eng.38(6), 974–982 (1999). [CrossRef]
  19. H. Canabal and E. Bernabeu, “Phase extraction methods for analysis of crossed fringe patterns,” Proc. SPIE3744, 231–240 (1999). [CrossRef]
  20. J. Villa, J. A. Quiroga, and M. Servín, “Improved regularized phase-tracking technique for the processing of squared-grating deflectograms,” Appl. Opt.39(4), 502–508 (2000). [CrossRef] [PubMed]
  21. J. L. Flores, B. Bravo-Medina, and J. A. Ferrari, “One-frame two-dimensional deflectometry for phase retrieval by addition of orthogonal fringe patterns,” Appl. Opt.52(26), 6537–6542 (2013). [CrossRef] [PubMed]
  22. H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Opt. Lett.35(12), 1932–1934 (2010). [CrossRef] [PubMed]
  23. I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett.105(24), 248102 (2010). [CrossRef] [PubMed]
  24. I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc.1221, 73–79 (2010). [CrossRef]
  25. H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express19(4), 3339–3346 (2011). [CrossRef] [PubMed]
  26. K. S. Morgan, D. M. Paganin, and K. K. Siu, “Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid,” Opt. Express19(20), 19781–19789 (2011). [CrossRef] [PubMed]
  27. S. Rutishauser, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett.99(22), 221104 (2011). [CrossRef]
  28. S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, and C. David, “X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer,” Opt. Lett.37(10), 1622–1624 (2012). [CrossRef] [PubMed]
  29. H. Wang, S. Berujon, I. Pape, S. Rutishauser, C. David, and K. Sawhney, “At-wavelength metrology using the moiré fringe analysis method based on a two-dimensional grating interferometer,” Nucl. Instrum. Methods Phys. Res. A710, 78–81 (2013). [CrossRef]
  30. L. Salbut, “Multichannel system for automatic analysis of u,v,w displacements in grating interferometry,” in Physical Research, W. Juptner and W. Osten, eds. 19, 282–287 (Akademie, 1993).
  31. M. Kujawinska and M. Pirga, “Fringe pattern analysis for the investigation of dynamic processes in experimental mechanics,” in Physical Research, W. Juptner and W. Osten, eds. 19, 391–394 (Akademie, 1993).
  32. M. Pirga and M. Kujawinska, “Two directional spatial-carrier phase-shifting method for analysis of crossed and closed fringe patterns,” Opt. Eng.34(8), 2459–2466 (1995). [CrossRef]
  33. K. Pokorski and K. Patorski, “Separation of complex fringe patterns using two-dimensional continuous wavelet transform,” Appl. Opt.51(35), 8433–8439 (2012). [CrossRef] [PubMed]
  34. M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng.52, 230–240 (2014). [CrossRef]
  35. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998). [CrossRef]
  36. C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett.12(10), 701–704 (2005). [CrossRef]
  37. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw.22(4), 469–483 (1996). [CrossRef]
  38. J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003). [CrossRef]
  39. S. M. A. Bhuiyan, N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal.1(2), 309–338 (2009). [CrossRef]
  40. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt.47(14), 2592–2598 (2008). [CrossRef] [PubMed]
  41. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt.48(36), 6862–6869 (2009). [CrossRef] [PubMed]
  42. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt.50(5), 641–647 (2011). [CrossRef] [PubMed]
  43. M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50(28), 5513–5523 (2011). [CrossRef] [PubMed]
  44. Y. Zhou and H. Li, “Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition,” Opt. Express19(19), 18207–18215 (2011). [CrossRef] [PubMed]
  45. X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett.37(11), 1904–1906 (2012). [CrossRef] [PubMed]
  46. X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett.34(13), 2033–2035 (2009). [CrossRef] [PubMed]
  47. X. Zhou, A. G. Podoleanu, Z. Yang, T. Yang, and H. Zhao, “Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns,” Opt. Express20(22), 24247–24262 (2012). [CrossRef] [PubMed]
  48. S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” in Proc. IEEE Int. Conf. Acoustic, Speech and Signal Process. (Institute of Electrical and Electronics Engineers, 2008), 1313–1316. [CrossRef]
  49. S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation,” EURASIP J. Adv. Signal Process.2008(21), 728356 (2008). [CrossRef]
  50. K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express19(27), 26065–26078 (2011). [CrossRef] [PubMed]
  51. M. Trusiak and K. Patorski, “Space domain interpetation of incoherent moiré superimpositions using FABEMD,” Proc. SPIE 8697, 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 869704 (December 18, 2012). [CrossRef]
  52. M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express20(21), 23463–23479 (2012). [CrossRef] [PubMed]
  53. M. Wielgus, M. Bartys, A. Antoniewicz, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion, ” in Proc. 15th Int. Conf. Inform. Fusion (FUSION,2012), 649–654.
  54. Y. Zhou, S.-T. Zhou, Z.-Y. Zhong, and H.-G. Li, “A de-illumination scheme for face recognition based on fast decomposition and detail feature fusion,” Opt. Express21(9), 11294–11308 (2013). [CrossRef] [PubMed]
  55. C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit.32(1), 71–86 (1999). [CrossRef]
  56. S. Osman and W. Wang, “An enhanced Hilbert-Huang transform technique for bearing condition monitoring,” Meas. Sci. Technol.24(8), 085004 (2013). [CrossRef]
  57. Z. Wu, N. E. Huang, S. R. Long, and C. K. Peng, “On the trend, detrending, and variability of nonlinear and nonstationary time series,” Proc. Natl. Acad. Sci. U.S.A.104(38), 14889–14894 (2007). [CrossRef] [PubMed]
  58. Z. Yang, B. W.-K. Ling, and C. Bingham, “Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum,” Measurement46(8), 2481–2491 (2013). [CrossRef]
  59. P. Flandrin, P. Goncalves, and G. Rilling, “Detrending and denoising with empirical mode decomposition,” In EUSIPCO 2004. September 6–10, Vienna, Austria (2004)
  60. G. Rilling, P. Flandrin, and P. Goncalves, “On empirical mode decomposition and its algorithms,” IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado (I), 2003.
  61. G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Process.56(1), 85–95 (2008). [CrossRef]
  62. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A18(8), 1862–1870 (2001). [CrossRef] [PubMed]
  63. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A18(8), 1871–1881 (2001). [CrossRef] [PubMed]
  64. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002). [CrossRef]
  65. L. Xiong and S. Jia, “Phase-error analysis and elimination for nonsinusoidal waveforms in Hilbert transform digital-fringe projection profilometry,” Opt. Lett.34(15), 2363–2365 (2009). [CrossRef] [PubMed]
  66. N. Sun, Y. Song, J. Wang, Z.-H. Li, and A.-Z. He, “Volume moiré tomography based on double cross gratings for real three-dimensional flow field diagnosis,” Appl. Opt.51(34), 8081–8089 (2012). [CrossRef] [PubMed]
  67. J. Schmit, K. Patorski, and K. Creath, “Simultaneous registration of in- and out-of-plane displacements in modified grating interferometry,” Opt. Eng.36(8), 2240–2248 (1997). [CrossRef]
  68. K. Patorski, “Grating shearing interferometer with variable shear and fringe orientation,” Appl. Opt.25(22), 4192–4198 (1986). [CrossRef] [PubMed]
  69. K. Patorski, “Conjugate lateral shear interferometry and its implementation,” J. Opt. Soc. Am. A3(11), 1862–1870 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited