OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28403–28413

Efficient one-third harmonic generation in highly Germania-doped fibers enhanced by pump attenuation

Tianye Huang, Xuguang Shao, Zhifang Wu, Timothy Lee, Yunxu Sun, Huy Quoc Lam, Jing Zhang, Gilberto Brambilla, and Shum Ping  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28403-28413 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide a comprehensive study on one-third harmonic generation (OTHG) in highly Germania-doped fiber (HGDF) by analyzing the phase matching conditions for the step index-profile and optimizing the design parameters. For stimulated OTHG in HGDF, the process can be enhanced by fiber attenuation at the pump wavelength which dynamically compensates the accumulated phase-mismatch along the fiber. With 500 W pump and 35 W seed power, simulation results show that a 31% conversion efficiency, which is 4 times higher than the lossless OTHG process, can be achieved in 34 m of HGDF with 90 mol. % GeO2 doping in the core.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 2, 2013
Revised Manuscript: November 2, 2013
Manuscript Accepted: November 4, 2013
Published: November 11, 2013

Tianye Huang, Xuguang Shao, Zhifang Wu, Timothy Lee, Yunxu Sun, Huy Quoc Lam, Jing Zhang, Gilberto Brambilla, and Shum Ping, "Efficient one-third harmonic generation in highly Germania-doped fibers enhanced by pump attenuation," Opt. Express 21, 28403-28413 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express13(18), 6798–6806 (2005). [CrossRef] [PubMed]
  2. T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibres,” Opt. Express20(8), 8503–8511 (2012). [CrossRef] [PubMed]
  3. A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun.285(16), 3493–3497 (2012). [CrossRef]
  4. W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett.38(14), 2566–2568 (2013). [CrossRef] [PubMed]
  5. F. Gravier and B. Boulanger, “Triple-photon generation: comparison between theory and experiment,” J. Opt. Soc. Am. B25(1), 98–102 (2008). [CrossRef]
  6. M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A84(3), 033823 (2011). [CrossRef]
  7. S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, “Semiclassical model of triple photons generation in optical fibers,” Opt. Lett.36(15), 3000–3002 (2011). [CrossRef] [PubMed]
  8. S. Afshar V, M. A. Lohe, T. Lee, T. M. Monro, and N. G. R. Broderick, “Efficient third and one-third harmonic generation in nonlinear waveguides,” Opt. Lett.38(3), 329–331 (2013). [CrossRef] [PubMed]
  9. H. Takahashi and I. Sugimoto, “A germanium-oxide glass optical fiber prepared by a VAD method,” J. Lightwave Technol.2(5), 613–616 (1984). [CrossRef]
  10. S. Sakaguchi and S. Todoroki, “Optical properties of GeO2 glass and optical fibers,” Appl. Opt.36(27), 6809–6814 (1997). [CrossRef] [PubMed]
  11. K. Kravtsov, Y. K. Huang, and P. R. Prucnal, “All-optical 160 Gbits/s time-domain demultiplexer based on the heavily GeO2-doped silica-based nonlinear fiber,” Opt. Lett.34(4), 491–493 (2009). [CrossRef] [PubMed]
  12. V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett.9(3), 219–222 (2012). [CrossRef]
  13. E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express20(24), 27102–27107 (2012). [CrossRef] [PubMed]
  14. A. Efimov, A. J. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express11(20), 2567–2576 (2003). [CrossRef] [PubMed]
  15. K. Tarnowski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE J. Quantum Electron.47(5), 622–629 (2011). [CrossRef]
  16. K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J. A. Levenson, “Phase-matched third-harmonic generation in highly germanium-doped fiber,” Opt. Lett.37(3), 289–291 (2012). [CrossRef] [PubMed]
  17. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt.23(24), 4486–4493 (1984). [CrossRef] [PubMed]
  18. A. Snyder and J. Love, Optical Waveguide Theory, 1st ed. (Springer, 1983).
  19. A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun.79(11), 12–19 (1996). [CrossRef]
  20. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol.23(11), 3500–3508 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited