OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28423–28431

Ultra-compact optical 90° hybrid based on a wedge-shaped 2 × 4 MMI coupler and a 2 × 2 MMI coupler in silicon-on-insulator

Wei Yang, Mei Yin, Yanping Li, Xingjun Wang, and Ziyu Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28423-28431 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1753 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an ultra-compact optical 90° hybrid with the smallest length of 107μm, consisting of a wedge-shaped 2 × 4 MMI coupler connected with a 2 × 2 MMI coupler using silicon nanowaveguide technology. Neither cascaded phase shifters nor waveguide crossings are attached to the proposed 90° hybrid in coherent receiving system. The proposed device is demonstrated on silicon-on-insulator (SOI) with 220nm thick top-silicon layer and 2μm thick buried oxide layer. A high performance of the proposed 90° hybrid is exhibited experimentally with a high extinction ratio larger than 20dB, an excess loss mostly less than 0.5dB, a common mode rejection ratio better than −20dB and phase deviation within the range of 5° over C-band spectral range.

© 2013 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: September 30, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 6, 2013
Published: November 12, 2013

Wei Yang, Mei Yin, Yanping Li, Xingjun Wang, and Ziyu Wang, "Ultra-compact optical 90° hybrid based on a wedge-shaped 2 × 4 MMI coupler and a 2 × 2 MMI coupler in silicon-on-insulator," Opt. Express 21, 28423-28431 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission systems,” J. Quantum Electron.17(6), 919–935 (1981). [CrossRef]
  2. T. Kimura, “Coherent optical fiber transmission,” J. Lightwave Technol.5(4), 414–428 (1987). [CrossRef]
  3. H. Sun, K. T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express16(2), 873–879 (2008). [CrossRef] [PubMed]
  4. M. Seimetz and C. M. Weinert, “Options, feasibility and availability of 2×4 90°hybrids for coherent optical systems,” J. Lightwave Technol.24(3), 1317–1322 (2006). [CrossRef]
  5. L. Zimmermann, M. Kroh, K. Voigt, G. Winzer, H. Tian, L. Stampoulidis, B. Tillack, and K. Petermann, “Hybrid integration of coherent receivers for terabit ethernet on SOI waveguide PLC,” Proc. GFP 2012, paper ThA2 153–155 (2012). [CrossRef]
  6. C. R. Doerr, L. Zhang, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett.19(21), 1765–1767 (2007). [CrossRef]
  7. C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightwave Technol.29(4), 536–541 (2011). [CrossRef]
  8. R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90° hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” Proc. IPRM 2009, paper TuB2.2 167–170 (2009).
  9. Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90°optical hybrid over wide wavelength range,” IEICE Electron. Express7(3), 216–221 (2010). [CrossRef]
  10. L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett.21(3), 143–145 (2009). [CrossRef]
  11. K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett.23(23), 1769–1771 (2011). [CrossRef]
  12. R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett.36(2), 178–180 (2011). [CrossRef] [PubMed]
  13. S.-H. Jeong and K. Morito, “Novel optical 90°hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI Coupler,” J. Lightwave Technol.28(9), 1323–1331 (2010). [CrossRef]
  14. M. Yin, W. Yang, Y. Huang, H. Yi, Y. Li, X. Wang, and H. Li, “Compact and wideband optical 90° hybrid based on silicon-on-insulator,” Proc. GFP 2013, paper WP12 57–58 (2013).
  15. S.-H. Jeong and K. Morito, “Compact optical 90 ° hybrid employing a tapered 2×4 MMI coupler serially connected by a 2×2 MMI coupler,” Opt. Express18(5), 4275–4288 (2010). [CrossRef] [PubMed]
  16. D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90°hybrid on LiNbO3,” J. Lightwave Technol.7(5), 794–798 (1989). [CrossRef]
  17. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt.33(18), 3905–3911 (1994). [CrossRef] [PubMed]
  18. D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett.10(6), 830–832 (1998). [CrossRef]
  19. L. B. Soldano and C. M. Pennings, “Optical multimode interference devices based on self-Imaging: Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  20. Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express17(5), 3659–3672 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited