OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28432–28437

Sum frequency generation in pure zinc-blende GaAs nanowires

Xiaoqing Zhang, Hao He, Jintao Fan, Chenglin Gu, Xin Yan, Minglie Hu, Xia Zhang, Xiaomin Ren, and Chingyue Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28432-28437 (2013)
http://dx.doi.org/10.1364/OE.21.028432


View Full Text Article

Enhanced HTML    Acrobat PDF (1888 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinearity of semiconductor nanowires makes them potential frequency converters in nanoscale optoelectronics. Here we demonstrate that sum frequency generation signals can be acquired from GaAs nanowires when excited by a femtosecond laser at 1048 nm and a tunable optical parametric oscillator ranging from 1416 nm to 1770 nm. The SFG intensity is insensitive to the polarization but quite sensitive to the temporal overlap of incident lasers pulses. It is shown that they can work for pulse-width measurement of femtosecond lasers in the near infrared band. Our results suggest GaAs NWs to be excellent optical nonlinear mixers in nanoscale optoelectronics.

© 2013 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 18, 2013
Revised Manuscript: October 20, 2013
Manuscript Accepted: November 1, 2013
Published: November 12, 2013

Citation
Xiaoqing Zhang, Hao He, Jintao Fan, Chenglin Gu, Xin Yan, Minglie Hu, Xia Zhang, Xiaomin Ren, and Chingyue Wang, "Sum frequency generation in pure zinc-blende GaAs nanowires," Opt. Express 21, 28432-28437 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28432


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011). [CrossRef] [PubMed]
  2. C. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).
  3. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011). [CrossRef] [PubMed]
  4. J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett.7(3), 831–836 (2007). [CrossRef] [PubMed]
  5. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007). [CrossRef] [PubMed]
  6. Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett.8(7), 2056–2062 (2008). [CrossRef] [PubMed]
  7. H. Yan, H.-S. Choe, S.-W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature470(7333), 240–244 (2011). [CrossRef] [PubMed]
  8. M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Lett.12(6), 3074–3079 (2012). [CrossRef] [PubMed]
  9. R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012). [CrossRef] [PubMed]
  10. P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: What’s next?” Nano Lett.10(5), 1529–1536 (2010). [CrossRef] [PubMed]
  11. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express17(10), 7893–7900 (2009). [CrossRef] [PubMed]
  12. J. C. Johnson, H. Yan, P. Yang, and R. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003). [CrossRef]
  13. F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011). [CrossRef] [PubMed]
  14. H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. Ren, and C. Wang, “Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources,” Appl. Phys. Lett.103(14), 143110 (2013). [CrossRef]
  15. R. Chen, S. Crankshaw, T. Tran, L. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010). [CrossRef]
  16. R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012). [CrossRef] [PubMed]
  17. P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006). [CrossRef]
  18. C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett.11(7), 3022–3025 (2011). [CrossRef] [PubMed]
  19. J. C. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002). [CrossRef]
  20. X. Ye, H. Huang, X. Ren, Y. Yang, J. Guo, Y. Huang, and Q. Wang, “Growth of pure zinc blende GaAs nanowires: effect of size and density of Au nanoparticles,” Chin. Phys. Lett.27(4), 046101 (2010). [CrossRef]
  21. C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett.38(11), 1820–1822 (2013). [CrossRef] [PubMed]
  22. M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B104(1), 1–5 (2000). [CrossRef]
  23. R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  24. W. Fan, S. Zhang, N. Panoiu, A. Abdenour, S. Krishna, R. Osgood, K. Malloy, and S. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006). [CrossRef]
  25. X. Zhang, H. He, M. Hu, X. Yan, X. Zhang, X. Ren, and Q. Wang, “Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses,” Acta Phys. Sin.62, 076102 (2013).
  26. A. Greytak, C. Barrelet, Y. Li, and C. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett.87(15), 151103 (2005). [CrossRef]
  27. A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron.29(12), 2928–2933 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited