OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28438–28443

Plasmonic analog of electromagnetically induced transparency in nanostructure graphene

Xi Shi, Dezhuan Han, Yunyun Dai, Zongfu Yu, Yong Sun, Hong Chen, Xiaohan Liu, and Jian Zi  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28438-28443 (2013)
http://dx.doi.org/10.1364/OE.21.028438


View Full Text Article

Enhanced HTML    Acrobat PDF (1785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Graphene has shown intriguing optical properties as a new class of plasmonic material in the terahertz regime. In particular, plasmonic modes in graphene nanostructures can be confined to a spatial size that is hundreds of times smaller than their corresponding wavelengths in vacuum. Here, we show numerically that by designing graphene nanostructures in such deep-subwavelength scales, one can obtain plasmonic modes with the desired radiative properties such as radiative and dark modes. By placing the radiative and dark modes in the vicinity of each other, we further demonstrate electromagnetically induced transparency (EIT), analogous to the atomic EIT. At the transparent window, there exist very large group delays, one order of magnitude larger than those offered by metal structures. The EIT spectrum can be further tuned electrically by applying a gate voltage. Our results suggest that the demonstrated EIT based on graphene plasmonics may offer new possibilities for applications in photonics.

© 2013 Optical Society of America

OCIS Codes
(230.4555) Optical devices : Coupled resonators
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Plasmonics

History
Original Manuscript: October 10, 2013
Revised Manuscript: November 5, 2013
Manuscript Accepted: November 5, 2013
Published: November 12, 2013

Citation
Xi Shi, Dezhuan Han, Yunyun Dai, Zongfu Yu, Yong Sun, Hong Chen, Xiaohan Liu, and Jian Zi, "Plasmonic analog of electromagnetically induced transparency in nanostructure graphene," Opt. Express 21, 28438-28443 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006). [CrossRef] [PubMed]
  2. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008). [CrossRef] [PubMed]
  3. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  4. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009). [CrossRef] [PubMed]
  5. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009). [CrossRef] [PubMed]
  6. Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B83(19), 195140 (2011). [CrossRef]
  7. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009). [CrossRef]
  8. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  9. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010). [CrossRef] [PubMed]
  10. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012). [CrossRef] [PubMed]
  11. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  12. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys.8(12), 318 (2006). [CrossRef]
  13. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75(20), 205418 (2007). [CrossRef]
  14. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009). [CrossRef]
  15. F. Bonaccorso, Z. Sun, T. Hassan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  16. A. N. Grirorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6(11), 749–758 (2012). [CrossRef]
  17. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008). [CrossRef] [PubMed]
  18. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011). [CrossRef] [PubMed]
  19. F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011). [CrossRef] [PubMed]
  20. A. Yu Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84(16), 161407 (2011). [CrossRef]
  21. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012). [CrossRef] [PubMed]
  22. H. Ian, Y. X. Liu, and F. Nori, “Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits,” Phys. Rev. A81(6), 063823 (2010). [CrossRef]
  23. T. R. Zhan, X. Shi, Y. Y. Dai, X. H. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter25(21), 215301 (2013). [CrossRef] [PubMed]
  24. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  25. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012). [CrossRef] [PubMed]
  26. Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. Lee, “Magnetic plasmon resonance: underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B82(19), 195112 (2010). [CrossRef]
  27. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999). [CrossRef]
  28. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103(3), 033003 (2009). [CrossRef] [PubMed]
  29. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett.93(23), 233903 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited