OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28444–28449

Solution-processable complex plasmonic quasicrystals

Tianrui Zhai, Yuanhai Lin, Hongmei Liu, and Xinping Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28444-28449 (2013)
http://dx.doi.org/10.1364/OE.21.028444


View Full Text Article

Enhanced HTML    Acrobat PDF (4581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large-area plasmonic photonic structures containing a proportion of quasicrystals can be fabricated by a solution-processable method. A photoresist film is exposed to a multi-beam interference pattern to form a quasicrystal template. A gold nanoparticle colloid is then spin-coated onto the template. An inverse pattern can be obtained after annealing to afford greater control over the sample morphologies and spectroscopic characteristics. Coupling between the waveguide modes and particle plasmons strengthens with increasing annealing temperature. After mode degeneration is removed, a multi-mode coupling process is observed. These results are helpful in understanding the mechanisms and design strategies of complex plasmonic nanostructures.

© 2013 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: August 28, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 5, 2013
Published: November 12, 2013

Citation
Tianrui Zhai, Yuanhai Lin, Hongmei Liu, and Xinping Zhang, "Solution-processable complex plasmonic quasicrystals," Opt. Express 21, 28444-28449 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Dal Negro and N.-N. Feng, “Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles,” Opt. Express15(22), 14396–14403 (2007). [CrossRef] [PubMed]
  2. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008). [CrossRef] [PubMed]
  3. J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B80(15), 155118 (2009). [CrossRef]
  4. Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics6(3), 507–514 (2011). [CrossRef]
  5. F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett.89(12), 121115 (2006). [CrossRef]
  6. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008). [CrossRef] [PubMed]
  7. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9(11), 3922–3929 (2009). [CrossRef] [PubMed]
  8. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics4(3), 165–169 (2010). [CrossRef]
  9. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express17(5), 3741–3753 (2009). [CrossRef] [PubMed]
  10. F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett.90(9), 091119 (2007). [CrossRef]
  11. Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett.88(25), 251104 (2006). [CrossRef]
  12. X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology24(25), 255303 (2013). [CrossRef] [PubMed]
  13. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006). [CrossRef] [PubMed]
  14. X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007). [CrossRef]
  15. X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology20(42), 425303 (2009). [CrossRef] [PubMed]
  16. H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl.8(3), 131–139 (2010). [CrossRef]
  17. S.-C. Cheng, X. Zhu, and S. Yang, “Complex 2D photonic crystals with analogue local symmetry as 12-fold quasicrystals,” Opt. Express17(19), 16710–16715 (2009). [CrossRef] [PubMed]
  18. Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett.93(6), 061112 (2008). [CrossRef]
  19. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000). [CrossRef] [PubMed]
  20. X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics6(2), 273–279 (2011). [CrossRef]
  21. C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep.2, 681 (2012). [CrossRef] [PubMed]
  22. C. Janot, Quasicrystals: A Primer (Clarendon Press, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited