OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28450–28455

Experimental demonstration of a wave plate utilizing localized plasmonic resonances in nanoapertures

Jasper J. Cadusch, Timothy D. James, and Ann Roberts  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28450-28455 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we demonstrate the fabrication and characterization of a plasmonic wave plate. The device uses detuned, orthogonal nanometric apertures that support localized surface plasmon resonances on their interior walls. A device was fabricated in a thin silver film using focused ion beam milling and standard polarization tomography used to determine its Mueller matrix. We demonstrate a device that can convert linearly polarized light to light with an overall degree of polarization of 88% and a degree of circular polarization of 86% at a particular wavelength of 702 nm.

© 2013 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: August 7, 2013
Revised Manuscript: October 30, 2013
Manuscript Accepted: November 4, 2013
Published: November 12, 2013

Jasper J. Cadusch, Timothy D. James, and Ann Roberts, "Experimental demonstration of a wave plate utilizing localized plasmonic resonances in nanoapertures," Opt. Express 21, 28450-28455 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008). [CrossRef] [PubMed]
  2. A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36(9), 1626–1628 (2011). [CrossRef] [PubMed]
  3. J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011). [CrossRef]
  4. M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012). [CrossRef]
  5. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012). [CrossRef] [PubMed]
  6. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101(2), 023101 (2012). [CrossRef]
  7. P. G. Thompson, C. G. Biris, E. J. Osley, O. Gaathon, R. M. Osgood, N. C. Panoiu, and P. A. Warburton, “Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures,” Opt. Express19(25), 25035–25047 (2011). [CrossRef] [PubMed]
  8. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004). [CrossRef] [PubMed]
  9. P. F. Chimento, N. V. Kuzmin, J. Bosman, P. F. Alkemade, G. W’t Hooft, and E. R. Eliel, “A subwavelength slit as a quarter-wave retarder,” Opt. Express19(24), 24219–24227 (2011). [CrossRef] [PubMed]
  10. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36(13), 2498–2500 (2011). [CrossRef] [PubMed]
  11. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012). [CrossRef] [PubMed]
  12. H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared Tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett.38(9), 1567–1569 (2013). [CrossRef] [PubMed]
  13. L. Lin and A. Roberts, “Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances,” Opt. Express19(3), 2626–2633 (2011). [CrossRef] [PubMed]
  14. COMSOL Multiphysics,” www.comsol.com .
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  16. J.-H. Choe, J.-H. Kang, D.-S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express20(6), 6521–6526 (2012). [CrossRef] [PubMed]
  17. A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman, “Maximum-likelihood estimation of Mueller matrices,” Opt. Lett.31(6), 817–819 (2006). [CrossRef] [PubMed]
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic theory of propagation, interference and diffraction of light (CUP Archive, 1999).
  19. P.-C. Chen, Y.-L. Lo, T.-C. Yu, J.-F. Lin, and T.-T. Yang, “Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters,” Opt. Express17(18), 15860–15884 (2009). [CrossRef] [PubMed]
  20. D. G. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” JOSA A11(8), 2305–2319 (1994). [CrossRef]
  21. J. Zallat, C. Collet, and Y. Takakura, “Clustering of polarization-encoded images,” Appl. Opt.43(2), 283–292 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited