OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28483–28495

The Beynon Gabor zone plate: a new tool for de Broglie matter waves and hard X-rays? An off axis and focus intensity investigation

Martin M. Greve, Alexandre M. Vial, Jakob J. Stamnes, and Bodil Holst  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28483-28495 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7891 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical elements based on Fresnel zones are used in a range of applications, from X-ray telescopy to microscopy and recently also in the manipulation of de Broglie matter waves. In 1992 Beynon and co-workers presented a binary Gabor type zone plate (henceforth referred to as the Beynon Gabor zone plate). Because this zone plate has no higher order foci, it is in principle a very attractive candidate for focusing of de Broglie matter waves and in some cases X-rays. So far the Beynon Gabor zone plate investigations presented in the literature have concentrated on the intensity distribution along the optical axis and in the focal plane. Here we present a detailed numerical investigation of the Beynon Gabor zone plate, including an investigation of the off-optical axis, off focal plane intensity distribution for point source illumination. We show that at integer fractions of the focal length, the beam becomes nearly toroidal (doughnut-shaped). This offers potentially interesting new possibilities for de Broglie matter wave and X-ray optics, for example in STED-like applications. We further show that the increased intensity at the focal point predicted in the literature for a particular Beynon Gabor zone plate transmission function configuration is an artifact due to the lack of sampling nodes. We support our calculations with experimental measurements in the visible light range, using a Beynon Gabor zone plate fabricated with electron beam lithography.

© 2013 OSA

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(090.1970) Holography : Diffractive optics
(230.1950) Optical devices : Diffraction gratings
(340.0340) X-ray optics : X-ray optics
(020.1335) Atomic and molecular physics : Atom optics
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
Diffraction and Gratings

Original Manuscript: August 22, 2013
Revised Manuscript: October 5, 2013
Manuscript Accepted: October 7, 2013
Published: November 12, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Martin M. Greve, Alexandre M. Vial, Jakob J. Stamnes, and Bodil Holst, "The Beynon Gabor zone plate: a new tool for de Broglie matter waves and hard X-rays? An off axis and focus intensity investigation," Opt. Express 21, 28483-28495 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Michette, Optical Systems for Soft X rays (Plenum Press, 1986). [CrossRef]
  2. J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics (John Wiley and Sons, Ltd, 2001).
  3. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, R. Seeman, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001). [CrossRef] [PubMed]
  4. G. Andersen, D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46, 3706–3708 (2007). [CrossRef] [PubMed]
  5. T. Reisinger, S. Eder, M. M. Greve, H. I. Smith, B. Holst, “Free-standing silicon-nitride zoneplates for neutral-helium microscopy,” Microelectron. Eng. 87, 1011–1014 (2010). [CrossRef]
  6. O. Carnal, M. Sigel, T. Sleator, H. Takuma, J. Mlynek, “Imaging and focusing of atoms by a fresnel zone plate,” Phys. Rev. Lett. 67, 3231–3234 (1991). [CrossRef] [PubMed]
  7. R. B. Doak, R. E. Grisenti, S. Rehbein, G. Schmahl, J. P. Toennies, C. Wöll, “Towards realization of an atomic de broglie microscope: Helium atom focusing using fresnel zone plates,” Phys. Rev. Lett. 83, 4229–4232 (1999). [CrossRef]
  8. M. Koch, S. Rehbein, G. Schmahl, T. Reisinger, G. Bracco, W. E. Ernst, B. Holst, “Imaging with neutral atoms: a new matter-wave microscope,” J. Micros. 229, 1–5 (2008). [CrossRef]
  9. T. Reisinger, M. Greve, S. Eder, G. Bracco, B. Holst, “Brightness and virtual source size of a supersonic-expansion deuterium beam,” Phys. Rev. A 86, 043804 (2012). [CrossRef]
  10. T. Reisinger, G. Bracco, S. Rehbein, G. Schmahl, W. E. Ernst, B. Holst, “Direct images of the virtual source in a supersonic expansion,” J. Phys. Chem. A 111, 12620–12628 (2007). [CrossRef] [PubMed]
  11. T. Reisinger, G. Bracco, B. Holst, “Particle-wave discrimination in poisson spot experiments,” New Journal of Physics 13, 065016 (2011). [CrossRef]
  12. T. Reisinger, A. A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A. 79, 053823 (2009). [CrossRef]
  13. D. Garbor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  14. G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166, 237 (1950). [CrossRef] [PubMed]
  15. M. H. Horman, H. H. M. Chau, “Zone plate theory based on holography,” Appl. Opt. 6, 317–322 (1967). [CrossRef] [PubMed]
  16. S.-R. Wu, Y. Hwy, G. Margaritondo, “Hard-x-ray zone plates: Recent progress,” Materials 5, 1752–1733 (2012). [CrossRef]
  17. T. D. Beynon, I. Kirk, T. R. Mathews, “Gabor zone plate with binary transmittance values,” Opt. Lett. 17, 544–546 (1992). [CrossRef] [PubMed]
  18. C. Choy, L. Cheng, “High-efficiency cosin-approximated binary Garbor zone-plate,” Appl. Opt. 33, 794–799 (1994). [CrossRef] [PubMed]
  19. L. Wei, L. Kuang, W. Fan, H. Zang, L. Cao, Y. Gu, X. Wang, “Annulus-sector-element coded gabor zone plate at the x-ray wavelength,” Opt. Express 19, 21419–21424 (2011). [CrossRef] [PubMed]
  20. W. Fan, L. Wei, L. Zang, H., Cao, B. Zhu, X. Zhu, C. Xie, Y. Gao, Z. Zhao, Y. Gu, “Realizing a gabor zone plate with quasi-random distributed hexagon dots,” Opt. Express 21, 1473–1478 (2013). [CrossRef] [PubMed]
  21. H. H. M. Chau, “Zone plates produced optically,” Appl. Opt. 8, 1209–1211 (1969). [CrossRef] [PubMed]
  22. D. Gabor, “Microscopy by Reconstructed Wave-Fronts,” The Royal Society 197, 454–487 (1949). [CrossRef]
  23. M. H. Horman, “Efficiencies of zone plates and phase zone plates,” Appl. Opt. 6, 2011–2013 (1967). [CrossRef] [PubMed]
  24. J. Ding, M. Tang, Z. Jin, G. Wenqi, “Modified binary gabor zone plates,” Opt. Commun. 217, 97–103 (2003). [CrossRef]
  25. M. Born, E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Cambridge University Press, 1999). [CrossRef]
  26. D. J. Velleman, “Simpson symmetrized and surpassed,” Mathematics Magazine 77, 31–45 (2004). [CrossRef]
  27. M. M. Greve, B. Holst, “Optimization of an electron beam lithography instrument for fast, large area writing at 10 kv acceleration voltage,” J. Vac. Sci. Technol B 31, 043202 (2013). [CrossRef]
  28. J. P. Ballantyne, “Electron beam fabrication of chromium master masks,” J. Vac. Sci. Technol. 12, 1257–1260 (1975). [CrossRef]
  29. J. R. Janesick, Scientific Charge-Coupled Devices, vol. PM83 (SPIE Press, Washington, 2001). [CrossRef]
  30. S. Hell, J. Wichmann, “Breaking the diffraction resolution limit by Stimulated-Emission-Depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited