OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28507–28512

A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity

J. Liu, S. Ates, M. Lorke, J. Mørk, P. Lodahl, and S. Stobbe  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28507-28512 (2013)
http://dx.doi.org/10.1364/OE.21.028507


View Full Text Article

Enhanced HTML    Acrobat PDF (974 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an experimental and theoretical study on the gain mechanism in a photonic-crystal-cavity nanolaser with embedded quantum dots. From time-resolved measurements at low excitation power we find that four excitons are coupled to the cavity. At high excitation power we observe a smooth low-threshold transition from spontaneous emission to lasing. Before lasing emission sets in, however, the excitons are observed to saturate, and the gain required for lasing originates rather from multi-excitonic transitions, which give rise to a broad emission background. We compare the experiment to a model of quantum-dot microcavity lasers and find that the number of excitons that must be included to fit the data largely exceeds the measured number, which shows that transitions involving the wetting layer can provide a surprisingly large contribution to the gain.

© 2013 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.3948) Lasers and laser optics : Microcavity devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 5, 2013
Revised Manuscript: November 2, 2013
Manuscript Accepted: November 6, 2013
Published: November 12, 2013

Citation
J. Liu, S. Ates, M. Lorke, J. Mørk, P. Lodahl, and S. Stobbe, "A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity," Opt. Express 21, 28507-28512 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28507


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev.5, 607–633 (2011).
  2. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010). [CrossRef]
  3. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006). [CrossRef]
  4. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6, 248–252 (2012). [CrossRef]
  5. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010). [CrossRef]
  6. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009). [CrossRef]
  7. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011). [CrossRef] [PubMed]
  8. N. Gregersen, T. Suhr, M. Lorke, and J. Mørk, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett.100, 131107 (2012). [CrossRef]
  9. M. Lermer, N. Gregersen, M. Lorke, E. Schild, P. Gold, J. Mørk, C. Schneider, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, “High beta lasing in micropillar cavities with adiabatic layer design,” Appl. Phys. Lett.102, 052114 (2013). [CrossRef]
  10. S. Noda, “Seeking the ultimate nanolaser,” Science314, 260–261 (2006). [CrossRef] [PubMed]
  11. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006). [CrossRef] [PubMed]
  12. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2007). [CrossRef]
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dotnanocavity system,” Nat. Phys.6, 279–283 (2010). [CrossRef]
  14. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007). [CrossRef] [PubMed]
  15. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3, 724–728 (2009). [CrossRef]
  16. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dotcavity system,” Phys. Rev. Lett.103, 207403 (2009). [CrossRef]
  17. A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system,” Phys. Rev. A85, 033802 (2012). [CrossRef]
  18. K. H. Madsen, P. Kaer, A. Kreiner-Møller, S. Stobbe, A. Nysteen, J. Mørk, and P. Lodahl, “Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics,” Phys. Rev. B88, 045316 (2013). [CrossRef]
  19. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A78, 045802 (2008). [CrossRef]
  20. P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system,” Phys. Rev. Lett.104, 157401 (2010). [CrossRef] [PubMed]
  21. M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106, 227402 (2011). [CrossRef] [PubMed]
  22. M. Settnes, P. Kaer, A. Moelbjerg, and J. Mork, “Auger processes mediating the nonresonant optical emission from a semiconductor quantum dot embedded inside an optical cavity,” Phys. Rev. Lett.111, 067403 (2013). [CrossRef] [PubMed]
  23. P. Tighineanu, R. Daveau, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy,” Phys. Rev. B88, 155320 (2013). [CrossRef]
  24. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  25. C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A75, 013803 (2007). [CrossRef]
  26. S. Ates, C. Gies, S. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B78, 155319 (2008). [CrossRef]
  27. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett.98, 043906 (2007). [CrossRef] [PubMed]
  28. M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: Rate equation analysis versus microscopic theory,” Phys. Rev. B87, 205310 (2013). [CrossRef]
  29. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003). [CrossRef] [PubMed]
  30. Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett.107, 167404 (2011). [CrossRef] [PubMed]
  31. C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express19, 14370–14388 (2011). [CrossRef] [PubMed]
  32. J. Wiersig, C. Gies, F. Jahnke, M. Amann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature460, 245–249 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited