OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28531–28542

Light transmission enhancement from hybrid ZnO micro-mesh and nanorod arrays with application to GaN-based light-emitting diodes

Zhengmao Yin, Xiaoyan Liu, Huining Wang, Yongzhong Wu, Xiaopeng Hao, Ziwu Ji, and Xiangang Xu  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28531-28542 (2013)
http://dx.doi.org/10.1364/OE.21.028531


View Full Text Article

Enhanced HTML    Acrobat PDF (4761 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid ZnO micro-mesh and nanorod arrays (MMNR) was fabricated as a light output window for GaN-based light-emitting diodes (LEDs) to enhance the light extraction efficiency. The light output power of GaN-based LEDs with the ZnO MMNR is improved by 95% compared to the original planar LEDs. The ZnO MMNR is manufactured by photolithography techniques and a two-step wet chemical growth process. The incident angle-resolved light transmission of the ZnO MMNR beyond the critical angle of total internal reflection is greatly enhanced. The light diffraction pattern of the ZnO MMNR shows that it possesses both the two-dimensional diffraction grating effect of a ZnO micro-mesh and the light scattering effect of a ZnO nanorod array. LEDs with the ZnO MMNR have greater light extraction efficiency than those with only a ZnO micro-mesh or a ZnO nanorod array. The local optical field patterns of the ZnO micro-mesh and the ZnO MMNR are investigated using confocal scanning electroluminescence microscopy. The microscopic light extraction mechanism of the ZnO MMNR is analyzed in-depth.

© 2013 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Devices

History
Original Manuscript: October 25, 2013
Manuscript Accepted: November 1, 2013
Published: November 13, 2013

Citation
Zhengmao Yin, Xiaoyan Liu, Huining Wang, Yongzhong Wu, Xiaopeng Hao, Ziwu Ji, and Xiangang Xu, "Light transmission enhancement from hybrid ZnO micro-mesh and nanorod arrays with application to GaN-based light-emitting diodes," Opt. Express 21, 28531-28542 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  2. N. Holonyak, “Is the light emitting diode (LED) an ultimate lamp?” Am. J. Phys.68(9), 864–866 (2000). [CrossRef]
  3. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009). [CrossRef]
  4. S. Noda and M. Fujita, “Light-emitting diodes: photonic crystal efficiency boost,” Nat. Photonics3(3), 129–130 (2009). [CrossRef]
  5. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett.79(6), 711–712 (2001). [CrossRef]
  6. B.-U. Ye, B. J. Kim, Y. H. Song, J. H. Son, H. K. Yu, M. H. Kim, J.-L. Lee, and J. M. Baik, “Enhancing light emission of nanostructured vertical light-emitting diodes by minimizing total internal reflection,” Adv. Funct. Mater.22(3), 632–639 (2012). [CrossRef]
  7. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006).
  8. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4–5), 189–241 (2011). [CrossRef]
  9. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics3(3), 163–169 (2009). [CrossRef]
  10. H. K. Cho, J. Jang, J.-H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K.-D. Lee, S. H. Kim, K. Lee, S.-K. Kim, and Y.-H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes,” Opt. Express14(19), 8654–8660 (2006). [CrossRef] [PubMed]
  11. J. H. Kang, J. H. Ryu, H. K. Kim, H. Y. Kim, N. Han, Y. J. Park, P. Uthirakumar, and C.-H. Hong, “Comparison of various surface textured layer in InGaN LEDs for high light extraction efficiency,” Opt. Express19(4), 3637–3647 (2011). [CrossRef] [PubMed]
  12. T. Wei, Q. Kong, J. Wang, J. Li, Y. Zeng, G. Wang, J. Li, Y. Liao, and F. Yi, “Improving light extraction of InGaN-based light emitting diodes with a roughened p-GaN surface using CsCl nano-islands,” Opt. Express19(2), 1065–1071 (2011). [CrossRef] [PubMed]
  13. A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett.92(20), 203104 (2008). [CrossRef]
  14. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  15. P. Zhao and H. Zhao, “Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes,” Opt. Express20(S5), A765–A776 (2012). [CrossRef] [PubMed]
  16. Y. C. Yang, J.-K. Sheu, M.-L. Lee, C. H. Yen, W.-C. Lai, S. J. Hon, and T. K. Ko, “Vertical InGaN light-emitting diode with a retained patterned sapphire layer,” Opt. Express20(S6), A1019–A1025 (2012). [CrossRef]
  17. X.-H. Huang, J.-P. Liu, J.-J. Kong, H. Yang, and H.-B. Wang, “High-efficiency InGaN-based LEDs grown on patterned sapphire substrates,” Opt. Express19(S4), A949–A955 (2011). [CrossRef] [PubMed]
  18. Y.-C. Lee, C.-H. Ni, and C.-Y. Chen, “Enhancing light extraction mechanisms of InGaN-based light-emitting diodes through the integration of imprinting microstructures, patterned sapphire substrates, and surface roughness,” Opt. Express18(S4), A489–A498 (2010). [CrossRef] [PubMed]
  19. D. Pudiš, L. Šušlik, J. Škriniarová, J. Kováč, I. Martinček, J. Kováč, Š. Haščík, I. Kubicová, J. Novák, and M. Veselý, “Light extraction from a light emitting diode with photonic structure in the surface layer investigated by NSOM,” Opt. Laser Technol.43(5), 917–921 (2011). [CrossRef]
  20. C.-F. Lin, C.-M. Lin, K.-T. Chen, M.-S. Lin, and J.-J. Dai, “Green light-emitting diodes with a photoelectrochemically treated microhole-array pattern,” Electrochem. Solid State Lett.13(3), H90–H93 (2010). [CrossRef]
  21. S. H. Kim, H. H. Park, Y. H. Song, H. J. Park, J. B. Kim, S. R. Jeon, H. Jeong, M. S. Jeong, and G. M. Yang, “An improvement of light extraction efficiency for GaN-based light emitting diodes by selective etched nanorods in periodic microholes,” Opt. Express21(6), 7125–7130 (2013). [CrossRef] [PubMed]
  22. Z. Yin, X. Liu, Y. Wu, X. Hao, and X. Xu, “Enhancement of light extraction in GaN-based light-emitting diodes using rough beveled ZnO nanocone arrays,” Opt. Express20(2), 1013–1021 (2012). [CrossRef] [PubMed]
  23. J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett.90(20), 203515 (2007). [CrossRef]
  24. K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett.94(7), 071118 (2009). [CrossRef]
  25. K. Dai, C. B. Soh, S. J. Chua, L. Wang, and D. Huang, “Influence of the alignment of ZnO nanorod arrays on light extraction enhancement of GaN-based light-emitting diodes,” J. Appl. Phys.109(8), 083110 (2011). [CrossRef]
  26. B. S. Kang, S. J. Pearton, and F. Ren, “Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si,” Appl. Phys. Lett.90(8), 083104 (2007). [CrossRef]
  27. D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial patterned growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater.20(20), 3484–3489 (2010). [CrossRef]
  28. S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Appl. Phys. Lett.92(12), 121108 (2008). [CrossRef]
  29. X.-X. Fu, X.-N. Kang, B. Zhang, C. Xiong, X.-Z. Jiang, D.-S. Xu, W.-M. Du, and G.-Y. Zhang, “Light transmission from the large-area highly ordered epoxy conical pillar arrays and application to GaN-based light emitting diodes,” J. Mater. Chem.21(26), 9576–9581 (2011). [CrossRef]
  30. K. S. Kim, S. M. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Enhancement of light extraction through the wave-guiding effect of ZnO sub-microrods in InGaN blue light-emitting diodes,” Adv. Funct. Mater.20(7), 1076–1082 (2010). [CrossRef]
  31. X. L. Nguyen, T. N. N. Nguyen, V. T. Chau, and M. C. Dang, “The fabrication of GaN-based light emitting diodes (LEDs),” Adv. Nat. Sci. Nanosci. Nanotechnol.1(2), 025015 (2010). [CrossRef]
  32. S. Xu, Y. Shen, Y. Ding, and Z. L. Wang, “Growth and transfer of monolithic horizontal ZnO nanowire superstructures onto flexible substrates,” Adv. Funct. Mater.20(9), 1493–1497 (2010). [CrossRef]
  33. A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. F. Schubert, G. B. Kim, C. Sone, and J. K. Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys.110(5), 054510 (2011). [CrossRef]
  34. M. K. Lee, C. L. Ho, and P. C. Chen, “Light extraction efficiency enhancement of GaN blue LED by liquid-phase-deposited ZnO rods,” IEEE Photonics Technol. Lett.20(4), 252–254 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited