OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28550–28558

Dispersion-to-spectrum mapping in nonlinear fibers based on optical wave-breaking

David Castelló-Lurbe, Pedro Andrés, and Enrique Silvestre  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28550-28558 (2013)
http://dx.doi.org/10.1364/OE.21.028550


View Full Text Article

Enhanced HTML    Acrobat PDF (810 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we recognize new strategies involving optical wave-breaking for controlling the output pulse spectrum in nonlinear fibers. To this end, first we obtain a constant of motion for nonlinear pulse propagation in waveguides derived from the generalized nonlinear Schrödinger equation. In a second phase, using the above conservation law we theoretically analyze how to transfer in a simple manner the group-velocity-dispersion curve of the waveguide to the output spectral profile of pulsed light. Finally, the computation of several output spectra corroborates our proposition.

© 2013 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 10, 2013
Revised Manuscript: November 2, 2013
Manuscript Accepted: November 5, 2013
Published: November 13, 2013

Citation
David Castelló-Lurbe, Pedro Andrés, and Enrique Silvestre, "Dispersion-to-spectrum mapping in nonlinear fibers based on optical wave-breaking," Opt. Express 21, 28550-28558 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave-breaking in nonlinear optical fibers,” Opt. Lett.10, 457–459 (1985). [CrossRef] [PubMed]
  2. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B9, 1358–1361 (1992). [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics, 4 (Academic, 2007).
  4. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B10, 1185–1190 (1993). [CrossRef]
  5. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B25, 1938–1948 (2008). [CrossRef]
  6. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express19, 3775–3787 (2011). [CrossRef] [PubMed]
  7. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37, 2172–2174 (2012). [CrossRef] [PubMed]
  8. J. E. Rothenberg, “Femtosecond optical shocks and wave breaking in fiber propagation,” J. Opt. Soc. Am. B6, 2392–2401 (1989). [CrossRef]
  9. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP34, 62–70 (1972).
  10. F. Shimizu, “Frequency broadening in liquid by a short light pulse,” Phys. Rev. Lett.19, 1097–1100 (1967). [CrossRef]
  11. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express14, 9854–9863 (2006). [CrossRef] [PubMed]
  12. L. Cohen, Time-Frequency Analysis (Prentice Hall, 1995).
  13. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert 𝒲 function,” Adv. Comput. Math.5, 329–359 (1996). [CrossRef]
  14. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8, 506–520 (2002). [CrossRef]
  15. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express12, 317–324 (2004). [CrossRef] [PubMed]
  16. J. J. Miret, E. Silvestre, and P. Andrés, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express17, 9197–9203 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited