OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28570–28582

Dual-wavelength orthogonally polarized radiation generated by a tungsten thermal source

Fang Han, Xiangli Sun, Lijun Wu, and Qiang Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28570-28582 (2013)
http://dx.doi.org/10.1364/OE.21.028570


View Full Text Article

Enhanced HTML    Acrobat PDF (2494 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Developing controllable radiation sources in the mid-infrared spectral region is significant in photonics technology because of rare available resources. Based on the thermal emission from a one-dimensional shallow tungsten grating, we propose a two-dimensional orthogonally-crossed shallow grating to produce an orthogonally-polarized dual-wavelength radiation with the emissivity as high as 78% and 91% from a single surface. The simulation shows that the field is intensively concentrated in vicinity of the air-tungsten interface when surface plasmon polaritons are excited. In addition, by optimizing the geometric parameters of the grating, the field is found to be more concentrated which leads to higher emissivity. The two wavelengths can be produced independently or simultaneously, depending on the polarization of the picking-up polarizer. Our investigations can help us developing controllable multi-wavelength thermal radiation sources from a single surface.

© 2013 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.3060) Physical optics : Infrared
(290.6815) Scattering : Thermal emission

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 20, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 11, 2013
Published: November 13, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Fang Han, Xiangli Sun, Lijun Wu, and Qiang Li, "Dual-wavelength orthogonally polarized radiation generated by a tungsten thermal source," Opt. Express 21, 28570-28582 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28570


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-J. Greffet, “Applied physics: Controlled incandescence,” Nature478(7368), 191–192 (2011). [CrossRef] [PubMed]
  2. C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B86(3), 035316 (2012). [CrossRef]
  3. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett.79(9), 1393 (2001). [CrossRef]
  4. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature324(6097), 549–551 (1986). [CrossRef]
  5. B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys.100(6), 063529 (2006). [CrossRef]
  6. B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett.87(7), 071904 (2005). [CrossRef]
  7. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008). [CrossRef]
  8. W. Zhao, R. Biswas, I. Puscasu, and E. Johnson, “Angular variation of absorption and thermal emission from photonic crystals,” J. Opt. Soc. Am. B26(9), 1808 (2009). [CrossRef]
  9. J. T. Wan and C. T. Chan, “Thermal emission by metallic photonic crystal slabs,” Appl. Phys. Lett.89(4), 041915 (2006). [CrossRef]
  10. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002). [CrossRef] [PubMed]
  11. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002). [CrossRef] [PubMed]
  12. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett.30(19), 2623–2625 (2005). [CrossRef] [PubMed]
  13. N. Nguyen-Huu, Y. B. Chen, and Y. L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express20(6), 5882–5890 (2012). [CrossRef] [PubMed]
  14. Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun.269(2), 411–417 (2007). [CrossRef]
  15. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett.92(14), 141114 (2008). [CrossRef]
  16. K. Masuno, T. Sawada, S. Kumagai, and M. Sasaki, “Multiwavelength Selective IR Emission Using Surface Plasmon Polaritons for Gas Sensing,” IEEE Photon. Technol. Lett.23(22), 1661–1663 (2011). [CrossRef]
  17. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  18. J. H. Weaver, C. G. Olson, and D. W. Lynch, “Optical properties of crystalline tungsten,” Phys. Rev. B12(4), 1293–1297 (1975). [CrossRef]
  19. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal Radiation from Photonic Crystals: A Direct Calculation,” Phys. Rev. Lett.93(21), 213905 (2004). [CrossRef] [PubMed]
  20. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  21. Z. J. Zhong, Y. Xu, S. Lan, Q.-F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express18(1), 79–86 (2010). [CrossRef] [PubMed]
  22. M. Kretschmann, T. A. Leskova, and A. A. Maradudin, “Conical Propagation of a Surface Polariton Across a Grating,” Opt. Commun.215(4-6), 205–223 (2003). [CrossRef]
  23. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  24. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008). [CrossRef]
  25. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf.109(4), 608–619 (2008). [CrossRef]
  26. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express14(19), 8785–8796 (2006). [CrossRef] [PubMed]
  27. S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express18(5), 4829–4837 (2010). [CrossRef] [PubMed]
  28. Z. Nichalewicz, Genetic Algorithms + Data Strucutres = Evolution Programs (Spring-Verlag, New York, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (413 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited