OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28597–28608

Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y.Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28597-28608 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on numerical and experimental studies showing the influence of arc curvature on the confinement loss in hypocycloid-core Kagome hollow-core photonic crystal fiber. The results prove that with such a design the optical performances are strongly driven by the contour negative curvature of the core-cladding interface. They show that the increase in arc curvature results in a strong decrease in both the confinement loss and the optical power overlap between the core mode and the silica core-surround, including a modal content approaching true single-mode guidance. Fibers with enhanced negative curvature were then fabricated with a record loss-level of 17 dB/km at 1064 nm.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 12, 2013
Revised Manuscript: November 2, 2013
Manuscript Accepted: November 5, 2013
Published: November 13, 2013

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y.Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, "Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss," Opt. Express 21, 28597-28608 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  3. F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011). [CrossRef]
  4. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005). [CrossRef] [PubMed]
  5. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science318(5853), 1118–1121 (2007). [CrossRef] [PubMed]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002). [CrossRef] [PubMed]
  7. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express16(8), 5642–5648 (2008). [CrossRef] [PubMed]
  8. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express16(25), 20626–20636 (2008). [CrossRef] [PubMed]
  9. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express18(25), 25556–25566 (2010). [CrossRef] [PubMed]
  10. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express15(12), 7713–7719 (2007). [CrossRef] [PubMed]
  11. Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low Loss Broadband Transmission In Optimized Core-shape Kagome Hollow-core PCF,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), CPDB4. [CrossRef]
  12. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011). [CrossRef] [PubMed]
  13. T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol.31(16), 3052–3055 (2013). [CrossRef]
  14. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011). [CrossRef] [PubMed]
  15. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012). [CrossRef] [PubMed]
  16. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012). [CrossRef] [PubMed]
  17. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express2(7), 948–961 (2012). [CrossRef]
  18. B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J. L. Auguste, J. M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett.37(9), 1430–1432 (2012). [CrossRef] [PubMed]
  19. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Cups curvature effect on confinement loss in hypocycloid-core Kagome HC-PCF,” in CLEO: 2013 (Optical Society of America, 2013), CTu2K.4.
  20. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express21(19), 21912–21917 (2013). [CrossRef] [PubMed]
  21. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron.33(4/5), 359–371 (2001). [CrossRef]
  22. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol.15(4), 398–401 (2009). [CrossRef]
  23. L. Vincetti and V. Setti, “Confinement Loss in Kagome and Tube Lattice Fibers: Comparison and Analysis,” J. Lightwave Technol.30(10), 1470–1474 (2012). [CrossRef]
  24. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express20(13), 14350–14361 (2012). [CrossRef] [PubMed]
  25. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964). [CrossRef]
  26. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express18(22), 23133–23146 (2010). [CrossRef] [PubMed]
  27. NKTphotonics, http://www.nktphotonics.com/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited