OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28617–28627

Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure

Gaël Nardin, Travis M. Autry, Kevin L. Silverman, and S. T. Cundiff  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28617-28627 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multidimensional Coherent Optical Photocurrent Spectroscopy (MD-COPS) is implemented using unstabilized interferometers. Photocurrent from a semiconductor sample is generated using a sequence of four excitation pulses in a collinear geometry. Each pulse is frequency shifted by a unique radio frequency through acousto-optical modulation; the Four-Wave Mixing (FWM) signal is then selected in the frequency domain. The interference of an auxiliary continuous wave laser, which is sent through the same interferometers as the excitation pulses, is used to synthesize reference frequencies for lock-in detection of the photocurrent FWM signal. This scheme enables the partial compensation of mechanical fluctuations in the setup, achieving sufficient phase stability without the need for active stabilization. The method intrinsically provides both the real and imaginary parts of the FWM signal as a function of inter-pulse delays. This signal is subsequently Fourier transformed to create a multi-dimensional spectrum. Measurements made on the excitonic resonance in a double InGaAs quantum well embedded in a p-i-n diode demonstrate the technique.

© 2013 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:

Original Manuscript: September 17, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 2, 2013
Published: November 13, 2013

Gaël Nardin, Travis M. Autry, Kevin L. Silverman, and S. T. Cundiff, "Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure," Opt. Express 21, 28617-28627 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today66, 44 (2013).
  2. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions (Oxford Uni. Press, London/New York, 1987).
  3. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54, 425–463 (2003). [CrossRef] [PubMed]
  4. M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. USA97, 8219–8224 (2000). [CrossRef]
  5. S. Woutersen and P. Hamm, “Nonlinear two-dimensional vibrational spectroscopy of peptides,” J. Phys.: Condens. Matter14, R1035 (2002). [CrossRef]
  6. M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A107, 5258–5279 (2003). [CrossRef]
  7. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature434, 625–628 (2005). [CrossRef] [PubMed]
  8. X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional fourier transform spectroscopy,” Phys. Rev. Lett.96, 057406 (2006). [CrossRef] [PubMed]
  9. W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, “Two-dimensional terahertz correlation spectra of electronic excitations in semiconductor quantum wells,” J. Phys. Chem. B115, 5448–5455 (2011). [CrossRef]
  10. R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B88, 045304 (2013). [CrossRef]
  11. X. Dai, A. D. Bristow, D. Karaiskaj, and S. T. Cundiff, “Two-dimensional fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A82, 052503 (2010). [CrossRef]
  12. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D fourier-transform spectroscopy,” Nat. Commun.4, 1390 (2013). [CrossRef] [PubMed]
  13. M. E. Siemens, G. Moody, H. Li, A. D. Bristow, and S. T. Cundiff, “Resonance lineshapes in two-dimensional fourier transform spectroscopy,” Opt. Express18, 17699–17708 (2010). [CrossRef] [PubMed]
  14. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science324, 1169–1173 (2009). [CrossRef] [PubMed]
  15. D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett.104, 117401 (2010). [CrossRef] [PubMed]
  16. J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys135, 044510 (2011). [CrossRef] [PubMed]
  17. G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well,” arXiv e-print 1308.1689 (2013).
  18. G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B83, 115324 (2011). [CrossRef]
  19. J. Kasprzak, B. Patton, V. Savona, and W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nat. Photonics5, 57–63 (2011). [CrossRef]
  20. F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauss, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun.4, 1747 (2013). [CrossRef] [PubMed]
  21. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys.121, 4221–4236 (2004). [CrossRef] [PubMed]
  22. A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum.80, 073108 (2009). [CrossRef] [PubMed]
  23. M. Khalil, N. Demirdöven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett.90, 047401 (2003). [CrossRef] [PubMed]
  24. S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A103, 10489–10505 (1999). [CrossRef]
  25. T. Zhang, C. Borca, X. Li, and S. Cundiff, “Optical two-dimensional fourier transform spectroscopy with active interferometric stabilization,” Opt. Express13, 7432–7441 (2005). [CrossRef] [PubMed]
  26. A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, “All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy,” Opt. Express16, 18017–18027 (2008). [CrossRef] [PubMed]
  27. E. H. G. Backus, S. Garrett-Roe, and P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett.33, 2665–2667 (2008). [CrossRef] [PubMed]
  28. E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express15, 16681–16689 (2007). [CrossRef] [PubMed]
  29. J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express16, 17420–17428 (2008). [CrossRef] [PubMed]
  30. S.-H. Shim and M. T. Zanni, “How to turn your pumpprobe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11, 748–761 (2009). [CrossRef] [PubMed]
  31. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science333, 1723–1726 (2011). [CrossRef] [PubMed]
  32. D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A103, 10369–10380 (1999). [CrossRef]
  33. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300, 1553–1555 (2003). [CrossRef] [PubMed]
  34. C. Li, W. Wagner, M. Ciocca, and W. S. Warren, “Multiphoton femtosecond phase-coherent two-dimensional electronic spectroscopy,” J. Chem. Phys.126, 164307 (2007). [CrossRef] [PubMed]
  35. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys.127, 214307 (2007). [CrossRef] [PubMed]
  36. Mention of commercial products is for information only ; it does not imply NIST recommendation or endorsment, nor does it imply that the products mentioned are necessarily the best available for the purpose.
  37. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325–342 (2003). [CrossRef]
  38. P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys.125, 194303 (2006). [CrossRef] [PubMed]
  39. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett.87, 157401 (2001). [CrossRef] [PubMed]
  40. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett.87, 227401 (2001). [CrossRef] [PubMed]
  41. F. W. King, Hilbert Transforms, vol. 1 & 2 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 2009).
  42. J. G. Graeme, Photodiode Amplifiers: OP AMP Solutions (McGraw Hill Professional, 1996).
  43. See also application note from http://cds.linear.com/docs/en/datasheet/6244fb.pdf .
  44. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature418, 612–614 (2002). [CrossRef] [PubMed]
  45. M. Zecherle, C. Ruppert, E. C. Clark, G. Abstreiter, J. J. Finley, and M. Betz, “Ultrafast few-fermion optoelectronics in a single self-assembled InGaAs/GaAs quantum dot,” Phys. Rev. B82, 125314 (2010). [CrossRef]
  46. W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science338, 1317–1321 (2012). [CrossRef] [PubMed]
  47. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293, 1455–1457 (2001). [CrossRef] [PubMed]
  48. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009). [CrossRef] [PubMed]
  49. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics7, 306–310 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited