OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28657–28667

Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components

Li-Jing Cheng and Lei Liu  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28657-28667 (2013)
http://dx.doi.org/10.1364/OE.21.028657


View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report optical modulation of continuous terahertz (THz) wave in the frequency range of 570-600 GHz using photo-induced reconfigurable patterns on a silicon wafer. The patterns were implemented using programmable illumination from a commercially-available digital light processing (DLP) projector. A modulation depth of 20 dB at 585 GHz has been demonstrated. Modulation speed measurement shows a 3-dB bandwidth of ~1.3 kHz which is primarily limited by the DLP system. A photo-induced polarizer with tunable polarization angle has been demonstrated, showing a 3-dB extinction ratio. Reconfigurable aperture-arrays (4 x 4 pixels) have been attempted for room-temperature coded-aperture imaging using a single Schottky diode detector at 585 GHz. We envision that this technique will provide a simple but powerful means to realize a variety of cost-effective reconfigurable quasi-optical THz circuits and components.

© 2013 Optical Society of America

OCIS Codes
(130.1750) Integrated optics : Components
(230.4110) Optical devices : Modulators
(040.2235) Detectors : Far infrared or terahertz
(170.6795) Medical optics and biotechnology : Terahertz imaging

ToC Category:
Terahertz Optics

History
Original Manuscript: September 30, 2013
Manuscript Accepted: November 5, 2013
Published: November 14, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Li-Jing Cheng and Lei Liu, "Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components," Opt. Express 21, 28657-28667 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009). [CrossRef]
  2. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  3. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett.93(9), 091117 (2008). [CrossRef]
  4. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009). [CrossRef]
  5. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express17(2), 819–827 (2009). [CrossRef] [PubMed]
  6. C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett.88(10), 101107 (2006). [CrossRef]
  7. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012). [CrossRef] [PubMed]
  8. B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express21(2), 2324–2330 (2013). [CrossRef] [PubMed]
  9. J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express19(13), 12021–12026 (2011). [CrossRef] [PubMed]
  10. H. Alius and G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon,” Infrared Phys.32, 1–11 (1991). [CrossRef]
  11. T. Vogel, G. Dodel, E. Holzhauer, H. Salzmann, and A. Theurer, “High-speed switching of far-infrared radiation by photoionization in a semiconductor,” Appl. Opt.31(3), 329–337 (1992). [CrossRef] [PubMed]
  12. S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett.100(26), 261109 (2012). [CrossRef]
  13. S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett.37(8), 1391–1393 (2012). [CrossRef] [PubMed]
  14. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express21(10), 12507–12518 (2013). [CrossRef] [PubMed]
  15. L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond.17(2), 407–411 (2007). [CrossRef]
  16. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).
  17. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011). [CrossRef]
  18. L. Fekete, J. Y. Hlinka, E. Kadlec, P. Kuzel, and P. Mounaix, “Active optical control of the terahertz reflectivity of high-resistivity semiconductors,” Opt. Lett.30(15), 1992–1994 (2005). [CrossRef] [PubMed]
  19. A. Das, C. Megaridis, L. Liu, T. Wang, and A. Biswas, “Design and synthesis of superhydrophobic carbon nanofiber composite coatings for terahertz shielding and attenuation,” Appl. Phys. Lett.98(17), 174101 (2011). [CrossRef]
  20. L. Liu, R. Pathak, L.-J. Cheng, and T. Wang, “Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol-water mixtures on a microfluidic chip,” Sens. Actuators B Chem.184, 228–234 (2013). [CrossRef]
  21. L. Liu, J. Hesler, H. Xu, A. Lichtenberger, and R. Weikle, “A broadband quasi-optical terahertz detector utilizing a zero bias schottky diode,” IEEE Microw. Wirel. Compon. Lett.20(9), 504–506 (2010). [CrossRef]
  22. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasi-Optical Propagation and Applications (Wiley & Sons, Inc. 1997).
  23. C. M. Li, T. Sjodin, and H. L. Dai, “Photoexcited carrier diffusion near a Si-111 surface: Non-negligible consequence of carrier-carrier scattering,” Phys. Rev. B56(23), 15252–15255 (1997). [CrossRef]
  24. L. Zhang, J. H. Teng, H. Tanoto, S. Y. Yew, L. Y. Deng, and S. J. Chua, “Terahertz wire-grid polarizer by nanoimprinting lithography on high resistivity silicon substrate,” The International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, Italy (2010). [CrossRef]
  25. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett.34(3), 274–276 (2009). [CrossRef] [PubMed]
  26. L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon Nanotube Terahertz Polarizer,” Nano Lett.9(7), 2610–2613 (2009). [CrossRef] [PubMed]
  27. E. Hecht, Optics (Addison-Wesley, 2001).
  28. L. Liu, H. Xu, A. W. Lichtenberger, and R. M. Weikle, “Integrated 585 GHz hot- electron mixer focal-plane arrays based on annular-slot antennas for imaging applications,” IEEE Trans. Microw. Theory Tech.58(7), 1943–1951 (2010). [CrossRef]
  29. S. Hawasli, N. Alijabarri, and R. M. Weikle, “Schottky diode arrays for submillimeter-wave sideband generation,” 37th International Conference on Infrared, Millimeter, and Terahertz Waves, Wollongong, NSW, Australia, (2012). [CrossRef]
  30. I. Valova and Y. Kosugi, “Hadamard-based image decomposition and compression,” IEEE Trans. Inf. Technol. Biomed.4(4), 306–319 (2000). [CrossRef] [PubMed]
  31. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008). [CrossRef]
  32. A. Kannegulla, Z. Jiang, S. Rahman, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. (submitted to).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited