OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28668–28675

Ideal optical backpropagation of scalar NLSE using dispersion-decreasing fibers for WDM transmission

Xiaojun Liang, Shiva Kumar, and Jing Shao  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28668-28675 (2013)
http://dx.doi.org/10.1364/OE.21.028668


View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ideal optical backpropagation (OBP) scheme to compensate for dispersion and nonlinear effects of the transmission fibers is proposed. The scheme consists of an optical phase conjugator (OPC), N spans of dispersion-decreasing fibers (DDFs) and amplifiers, placed at the end of the fiber optic link. In order to compensate for the nonlinear effects of the transmission fibers exactly, the nonlinear coefficient of the backpropagation fiber has to increase exponentially with distance or equivalently the power in the backpropagation fiber should increase exponentially with distance if the nonlinear coefficient is constant. In this paper, it is shown that a combination of DDFs and amplifiers can compensate for the nonlinear effects exactly. An analytical expression for the dispersion profile of the DDF is derived. Numerical simulation of a long haul wavelength division multiplexing (WDM) fiber optic system with the proposed OBP scheme shows that the system reach can be enhanced by 54% as compared to digital backpropagation (DBP).

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5040) Nonlinear optics : Phase conjugation
(260.2030) Physical optics : Dispersion

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 3, 2013
Revised Manuscript: November 7, 2013
Manuscript Accepted: November 8, 2013
Published: November 14, 2013

Citation
Xiaojun Liang, Shiva Kumar, and Jing Shao, "Ideal optical backpropagation of scalar NLSE using dispersion-decreasing fibers for WDM transmission," Opt. Express 21, 28668-28675 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28668


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express16(2), 880–888 (2008). [CrossRef] [PubMed]
  2. E. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express16(20), 16124–16137 (2008). [CrossRef] [PubMed]
  3. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26(20), 3416–3425 (2008). [CrossRef]
  4. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol.28(6), 939–951 (2010). [CrossRef]
  5. E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express18(14), 15144–15154 (2010). [CrossRef] [PubMed]
  6. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron.16(5), 1217–1226 (2010). [CrossRef]
  7. L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express18(16), 17075–17088 (2010). [CrossRef] [PubMed]
  8. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express18(22), 22796–22807 (2010). [CrossRef] [PubMed]
  9. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express19(4), 3449–3454 (2011). [CrossRef] [PubMed]
  10. G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express20(13), 14406–14418 (2012). [CrossRef] [PubMed]
  11. Y. Gao, J. H. Ke, K. P. Zhong, J. C. Cartledge, and S. S.-H. Yam, “Assessment of intra-channel nonlinear compensation for 112 Gb/s dual polarization 16QAM systems,” J. Lightwave Technol.30(24), 3902–3910 (2012). [CrossRef]
  12. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett.4(2), 52–54 (1979). [CrossRef] [PubMed]
  13. S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol.14(3), 243–248 (1996). [CrossRef]
  14. P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photonics Technol. Lett.18(9), 995–997 (2006). [CrossRef]
  15. S. Kumar and D. Yang, “Optical backpropagation for fiber-optic communications using highly nonlinear fibers,” Opt. Lett.36(7), 1038–1040 (2011). [CrossRef] [PubMed]
  16. J. Shao and S. Kumar, “Optical backpropagation for fiber-optic communications using optical phase conjugation at the receiver,” Opt. Lett.37(15), 3012–3014 (2012). [CrossRef] [PubMed]
  17. M. D. Pelusi, “WDM signal all-optical pre-compensation of the fiber nonlinearity in dispersion-managed links,” IEEE Photonics Technol. Lett.25(1), 71–74 (2013). [CrossRef]
  18. S. Kumar and J. Shao, “Optical back propagation with optimal step size for fiber optic transmission systems,” IEEE Photonics Technol. Lett.25(5), 523–526 (2013). [CrossRef]
  19. M. Morshed, L. B. Du, B. Foo, M. D. Pelusi, and A. J. Lowery, “Optical phase conjugation for nonlinearity compensation of 1.21-Tb/s Pol-Mux coherent optical OFDM,” in 18th OptoElectronics and Communications Conference (2013), paper PD3–4.
  20. D. Rafique and A. D. Ellis, “Nonlinearity compensation via spectral inversion and digital back-propagation: A practical approach,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3A.1. [CrossRef]
  21. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett.18(7), 476–478 (1993). [CrossRef] [PubMed]
  22. A. J. Stentz, R. W. Boyd, and A. F. Evans, “Dramatically improved transmission of ultrashort solitons through 40 km of dispersion-decreasing fiber,” Opt. Lett.20(17), 1770–1772 (1995). [CrossRef] [PubMed]
  23. I. Tomkos, D. Chowdhury, J. Conradi, D. Culverhouse, K. Ennser, C. Giroux, B. Hallock, T. Kennedy, A. Kruse, S. Kumar, N. Lascar, I. Roudas, M. Sharma, R. S. Vodhanel, and C.-C. Wang, “Demonstration of negative dispersion fibers for DWDM metropolitan area networks,” IEEE J. Sel. Top. Quantum Electron.7(3), 439–460 (2001). [CrossRef]
  24. J. Conradi, S. Kumar, and S. S. Rosenblum, “Negative dispersion single mode waveguide fiber,” US patent 6430346 B1, (2002).
  25. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009). [CrossRef]
  26. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15(23), 1351–1353 (1990). [CrossRef] [PubMed]
  27. S. Kumar, “Effect of dispersion on nonlinear phase noise in optical transmission systems,” Opt. Lett.30(24), 3278–3280 (2005). [CrossRef] [PubMed]
  28. C. Xie, “Inter-channel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift-keying systems,” IEEE Photonics Technol. Lett.21(5), 274–276 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited