OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28710–28718

Detecting the trapping of small metal nanoparticles in the gap of nanoantennas with optical second harmonic generation

Jérémy Butet, Andrea Lovera, and Olivier J. F. Martin  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28710-28718 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The second harmonic generation from gold nanoparticles trapped into realistic and idealized gold nanoantennas is numerically investigated using a surface integral equations technique. It is observed that the presence of a nanoparticle in the nanoantenna gap dramatically modifies the second harmonic intensity scattered into the far-field. These results clearly demonstrate that second harmonic generation is a promising alternative to the conventional linear optical methods for the detection of trapping events at the nanoscale.

© 2013 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Nonlinear Optics

Original Manuscript: September 17, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 4, 2013
Published: November 14, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics
Nonlinear Optics (2013) Optics Express

Jérémy Butet, Andrea Lovera, and Olivier J. F. Martin, "Detecting the trapping of small metal nanoparticles in the gap of nanoantennas with optical second harmonic generation," Opt. Express 21, 28710-28718 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004). [CrossRef]
  2. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express17(8), 6018–6024 (2009). [CrossRef] [PubMed]
  3. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  4. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  5. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plamonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011). [CrossRef]
  6. A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett.99(15), 151104 (2011). [CrossRef]
  7. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Phys.6, 737–748 (2012).
  8. B. J. Roxworthy and K. C. Toussaint., “Femtosecond-pulsed plasmonic nanotweezers,” Sci. Rep.2, 660 (2012). [CrossRef] [PubMed]
  9. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013). [CrossRef]
  10. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012). [CrossRef] [PubMed]
  11. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012). [CrossRef] [PubMed]
  12. V. K. Valev, “Characterization of nanostructured plasmonic surfaces with second harmonic generation,” Langmuir28(44), 15454–15471 (2012). [CrossRef] [PubMed]
  13. J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett.13(4), 1787–1792 (2013). [PubMed]
  14. H. Shen, N. Nguyen, D. Gachet, V. Maillard, T. Toury, and S. Brasselet, “Nanoscale optical properties of metal nanoparticles probed by second harmonic generation microscopy,” Opt. Express21(10), 12318–12326 (2013). [CrossRef] [PubMed]
  15. E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Chirality in nonlinear-optical response of planar G-shaped nanostructures,” Opt. Express20(8), 8518–8523 (2012). [CrossRef] [PubMed]
  16. V. K. Valev, B. D. Clercq, X. Zheng, D. Denkova, E. J. Osley, S. Vandendriessche, A. V. Silhanek, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “The role of chiral local field enhancements below the resolution limit of second harmonic generation microscopy,” Opt. Express20(1), 256–264 (2012). [CrossRef] [PubMed]
  17. J. W. Jarrett, M. Chandra, and K. L. Knappenberger., “Optimization of nonlinear optical localization using electromagnetic surface fields (NOLES) imaging,” J. Chem. Phys.138(21), 214202 (2013). [CrossRef] [PubMed]
  18. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010). [CrossRef]
  19. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B85(20), 201403 (2012). [CrossRef]
  20. J. B. Khurgin and G. Sun, “The case for using gap plasmon-polaritons in second-order optical nonlinear processes,” Opt. Express20(27), 28717–28723 (2012). [CrossRef] [PubMed]
  21. A. Rose, D. Huang, and D. R. Smith, “Nonlinear interference and unidirectional wave mixing in metamaterials,” Phys. Rev. Lett.110(6), 063901 (2013). [CrossRef] [PubMed]
  22. R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013). [CrossRef] [PubMed]
  23. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulation of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26(4), 732–740 (2009). [CrossRef]
  24. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27(10), 2261–2271 (2010). [CrossRef] [PubMed]
  25. J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express19(23), 23386–23399 (2011). [CrossRef] [PubMed]
  26. J. Butet, B. Gallinet, K. Thyagarajan, and O. J. F. Martin, “Second harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: A surface integral approach,” J. Opt. Soc. Am. B30(11), 2970–2979 (2013). [CrossRef]
  27. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11(2), 482–487 (2011). [CrossRef] [PubMed]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  29. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009). [CrossRef]
  30. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010). [CrossRef]
  31. T. V. Raziman and O. J. F. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express21(18), 21500–21507 (2013). [CrossRef] [PubMed]
  32. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009). [CrossRef] [PubMed]
  33. M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009). [CrossRef]
  34. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011). [CrossRef] [PubMed]
  35. B. Metzger, M. Hentschel, M. Lippitz, and H. Giessen, “Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas,” Opt. Lett.37(22), 4741–4743 (2012). [CrossRef] [PubMed]
  36. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  37. L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett.33(24), 3001–3003 (2008). [CrossRef] [PubMed]
  38. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express20(10), 10498–10508 (2012). [CrossRef] [PubMed]
  39. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  40. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett.87(10), 103902 (2001). [CrossRef] [PubMed]
  41. B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light,” Phys. Rev. B82(24), 241404 (2010). [CrossRef]
  42. G. Gonella, W. Gan, B. Xu, and H.-L. Dai, “The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles,” J. Phys. Chem. Lett.3(19), 2877–2881 (2012). [CrossRef]
  43. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric materials: small-particle limit,” J. Opt. Soc. Am. B21(7), 1328–1347 (2004). [CrossRef]
  44. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010). [CrossRef] [PubMed]
  45. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  46. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  47. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett.23(1), 7–9 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited