OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28719–28728

Temperature dependence of laser-induced damage threshold of optical coatings at different pulse widths

Katsuhiro Mikami, Shinji Motokoshi, Toshihiro Somekawa, Takahisa Jitsuno, Masayuki Fujita, and Kazuo A Tanaka  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28719-28728 (2013)
http://dx.doi.org/10.1364/OE.21.028719


View Full Text Article

Enhanced HTML    Acrobat PDF (2171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature dependence of the laser-induced damage threshold on optical coatings was studied in detail for laser pulses from 123 K to 473 K at different temperature. For pulses longer than a few picoseconds, the laser-induced damage threshold of coated substrates increased with decreasing temperature. This temperature dependence was reversed for pulses shorter than a few picoseconds. We describe the physics models to explain the observed scaling. The electron avalanche is essential to explain the differences in the temperature dependence.

© 2013 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3440) Lasers and laser optics : Laser-induced breakdown

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 6, 2013
Revised Manuscript: October 8, 2013
Manuscript Accepted: November 7, 2013
Published: November 14, 2013

Citation
Katsuhiro Mikami, Shinji Motokoshi, Toshihiro Somekawa, Takahisa Jitsuno, Masayuki Fujita, and Kazuo A Tanaka, "Temperature dependence of laser-induced damage threshold of optical coatings at different pulse widths," Opt. Express 21, 28719-28728 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: understanding after a 40-years research,” Proc. SPIE7132, 713202 (2008). [CrossRef]
  2. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  3. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995). [CrossRef] [PubMed]
  4. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005). [CrossRef]
  5. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001). [CrossRef]
  6. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).
  7. A. Dyan, F. Enguehard, S. Lallich, H. Piombini, and G. Duchateau, “Scaling laws in laser-induced potassium dihydrogen phosphate crystal damage by nanosecond pulses at 3ω,” J. Opt. Soc. Am. B25(6), 1087–1095 (2008). [CrossRef]
  8. A. A. Manekov, “New results on avalanche ionization as a laser damage mechanism in transparent solids,” Natl. Bur. Stand. Spec. Publ.541, 455–561 (1978).
  9. L. D. Merkle and D. Kitriotis, “Temperature dependence of laser-induced bulk damage in SiO2 and borosilicate glass,” Phys. Rev. B Condens. Matter38(2), 1473–1482 (1988). [CrossRef] [PubMed]
  10. K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, J. Kawanaka, and R. Yasuhara, “Temperature dependence of laser-induced damage threshold in silica glasses,” J. Phys. Conf. Ser.244(3), 032023 (2010). [CrossRef]
  11. K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE8190, 81900A (2011). [CrossRef]
  12. K. Mikami, S. Motokoshi, M. Fujita, T. Somekawa, T. Jitsuno, and K. A. Tanaka, “Temperature dependence of laser induced plasma thresholds and periodic structures by nanosecond infrared laser for copper, iron, and chrome,” Appl. Phys. Express5(6), 062701 (2012). [CrossRef]
  13. K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and M. Murakami, “Temperature dependence of nonlinear optical phenomena of silica glasses,” Proc. SPIE7842, 7842X1 (2011).
  14. H. Fröhlich and B. V. Paranjape, “Dielectric breakdown in solids,” Proc. Phys. Soc. B69(1), 21–32 (1956). [CrossRef]
  15. M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B24(6), 3519–3536 (1981). [CrossRef]
  16. W. Hu, Y. C. Shin, and G. King, “Effect of air breakdown with a focusing lens on ultra-short laser ablation,” Appl. Phys. Lett.99(23), 234104 (2011). [CrossRef]
  17. J. R. Bettis and R. A. House, II, andA. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” Nat. Bur. Stand. Spec. Publ.462, 338–345 (1976).
  18. X. Mao, S. S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett.82(5), 697–699 (2003). [CrossRef]
  19. X. Mao, S.-bor Wen, and R. E. Russo, “Time resolved laser-induced plasma dynamics,” Appl. Surf. Sci.253(15), 6316–6321 (2007). [CrossRef]
  20. I. T. Godmanis, A. N. Trukhin, and K. Hubner, “Exciton-phonon interaction in crystalline and vitreous SiO2,” Phys. Status Solidi116(1), 279–287 (1983). [CrossRef]
  21. J. M. Worlock and P. A. Fleury, “Electric field dependence of optical-phonon frequencies,” Phys. Rev. Lett.19(20), 1176–1179 (1967). [CrossRef]
  22. X. Shang, R. Zhang, and P. Ma, “Analysis of avalanche mechanisms in short-pulses laser-induced damage,” Opt. Laser Technol.42(1), 243–246 (2010). [CrossRef]
  23. S. Roy and D. Chakravorty, “Electrical conduction in composites of nanosized iron particles and oxide glasses,” J. Mater. Res.9(9), 2314–2318 (1994). [CrossRef]
  24. F. Seitz, “On the theory of electron multiplication in crystals,” Phys. Rev.76(9), 1376–1393 (1949). [CrossRef]
  25. P. Bräunlich, A. Schmid, and P. Kelly, “Contributions of multi photon absorption to laser-induced damage intrinsic damage in NaCl,” Appl. Phys. Lett.26(4), 150–153 (1975). [CrossRef]
  26. W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B17(5), 763–781 (1984). [CrossRef]
  27. T. E. Tsai, D. L. Griscom, and E. J. Friebele, “Mechanism of intrinsic Si E’-center photogeneration in high-purity silica,” Phys. Rev. Lett.61(4), 444–446 (1988). [CrossRef] [PubMed]
  28. R. Weeks, “Paramagnetic spectra of E’2 center in crystalline quartz,” Phys. Rev.130(2), 570–576 (1963). [CrossRef]
  29. K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “Two-photon processes in defect formation by excimer lasers in synthetic silica glass,” Appl. Phys. Lett.53(20), 1891–1893 (1988). [CrossRef]
  30. H. Hanafusa, Y. Hibino, and F. Yamamoto, “Formation mechanism of drawing-induced E’ center in silica optical fibers,” J. Appl. Phys.58(3), 1356–1361 (1985). [CrossRef]
  31. W. D. Compton and G. W. Arnold, “Radiation effects in fused silica and α-Al2O3,” Discuss. Faraday Soc.31, 130–139 (1961). [CrossRef]
  32. L. Pereira, P. Barquinha, E. Fortunato, and R. Martins, “Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide,” Mater. Sci. Eng. B118(1–3), 210–213 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited