OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28783–28793

Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating

Chang-Hyun Park, Yeo-Taek Yoon, Vivek Raj Shrestha, Chul-Soon Park, Sang-Shin Lee, and Eun-Soo Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28783-28793 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.2790) Integrated optics : Guided waves
(230.7400) Optical devices : Waveguides, slab
(260.5430) Physical optics : Polarization
(260.5740) Physical optics : Resonance
(310.6628) Thin films : Subwavelength structures, nanostructures
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

Original Manuscript: August 6, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 10, 2013
Published: November 15, 2013

Chang-Hyun Park, Yeo-Taek Yoon, Vivek Raj Shrestha, Chul-Soon Park, Sang-Shin Lee, and Eun-Soo Kim, "Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating," Opt. Express 21, 28783-28793 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. B. Catrysse, W. Suh, S. Fan, and M. Peeters, “One-mode model for patterned metal layers inside integrated color pixels,” Opt. Lett.29(9), 974–976 (2004). [CrossRef] [PubMed]
  2. Y. T. Yoon, S. S. Lee, and B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nanostructures10(1), 54–59 (2012). [CrossRef]
  3. S. C. Kim and E. S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res.1(1), 1–16 (2010).
  4. R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circ. Syst. I Regular Pap.57(5), 1029–1038 (2010).
  5. E. H. Cho, H. S. Kim, J. S. Sohn, C. Y. Moon, N. C. Park, and Y. P. Park, “Nanoimprinted photonic crystal color filters for solar-powered reflective displays,” Opt. Express18(26), 27712–27722 (2010). [CrossRef] [PubMed]
  6. H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano5(9), 7055–7060 (2011). [CrossRef] [PubMed]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  8. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express15(23), 15457–15463 (2007). [CrossRef] [PubMed]
  9. T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(59), 59 (2010). [PubMed]
  10. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett.12(2), 1026–1031 (2012). [CrossRef] [PubMed]
  11. E. H. Cho, H. S. Kim, B. H. Cheong, O. Prudnikov, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express17(10), 8621–8629 (2009). [CrossRef] [PubMed]
  12. A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011). [CrossRef]
  13. Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 22501 (2012). [CrossRef]
  14. C. H. Park, Y. T. Yoon, and S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express20(21), 23769–23777 (2012). [CrossRef] [PubMed]
  15. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  16. M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express21(10), 12495–12506 (2013). [CrossRef] [PubMed]
  17. M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett.24(17), 1552–1554 (2012). [CrossRef]
  18. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater.20(13), 2053–2062 (2010). [CrossRef]
  19. R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett.18(14), 1479–1481 (2006). [CrossRef]
  20. Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun.285(12), 2840–2845 (2012). [CrossRef]
  21. A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photon. Technol. Lett.19(19), 1457–1459 (2007). [CrossRef]
  22. F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett.90(26), 261109 (2007). [CrossRef]
  23. A. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006). [CrossRef]
  24. S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt.45(22), 5740–5747 (2006). [CrossRef] [PubMed]
  25. B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited